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History of Mathematics:
A New Way to apply Mathematics?

Michael A B Deakin1

The story I want to tell in this issue concerns a development I first learned of a
little over 30 years ago, but whose roots lie much deeper than that. It was in 1973
that I was first introduced to the mathematical development known as Catastrophe
Theory. This was first mooted in the context of an attempt to describe the process of
‘morphogenesis’ – the development of form from an initially amorphous (formless)
basis. The obvious example of this is the process studied in the science of Embryology,
which charts the progress of an initially undifferentiated mass of cells into the special-
ized structures of the later embryo. As I was at that time researching the application
of Mathematics to Biology, this interested me greatly, and I sought to master the new
branch of mathematics involved.

It was the brainchild of an eminent French mathematician, Ren Thom (1923–2002).
Thom won the Fields medal (widely regarded as the mathematical equivalent of the
Nobel Prize) in 1958 for his powerful and influential results in the topology of higher
dimensional spaces. In the late 1960s, he turned his attention to wider concerns, prompted
by his proof of a remarkable theorem on the classification of functions.

Generally, when some system is subjected to a continuous (smooth) change in the
value of some input parameter, the result is a continuous change in its state, as mea-
sured by some output. However, there are some exceptions. The simplest such case is
that of a cubic function

y = x3 − ax

which, when (the single parameter) a > 0, possesses a single minimum which is found
where x = x̄ =

√
a/3. However, when a < 0, no such minimum exists. (In many

important cases, systems adopt configurations based on the minima of various func-
tions.) This simple example in fact underlies a great number of ‘threshold phenomena’
such as the ‘change of state’ involved when a gas condenses into a liquid. Such sudden
changes in output came to be called ‘catastrophes’.

Thom considered all possible cases in which 1, 2, 3 or 4 parameters were involved
and found that there were only seven different possible situations: seven different
catastrophes. The possible ramifications of this discovery occupied him for much of
the following decade or so. He developed his theory in the context of the ‘Serbelloni
conferences’, select gatherings of diverse but acknowledged experts brought together
by the embryologist C H Waddington with the avowed purpose of developing a sys-
tematic theoretical (i.e. mathematical) Biology.

1Michael Deakin is an Honorary Research fellow in Mathematics at Monash University.
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In 1972, Thom published his influential book on the subject, shortly afterwards
translated as Structural Stability and Morphogenesis. This was the work that introduced
Catastrophe Theory to a wider public. I was one of the early reviewers of it, and my
consequent correspondence with Thom led to me organizing his visit to Australia in
1976. My conversations with him at that time helped me to understand much better
the wellsprings of his ideas on the status of Mathematical Biology.

His most developed account of those wellsprings was his contribution to the fourth
and last Serbelloni conference. This paper was entitled ‘Structuralism and biology’. It
begins with the commonplace observation that the big success stories of Applied Math-
ematics – Physics and Astronomy – have not been replicated in the ‘softer sciences’ of
Biology and the various social sciences.

Thom’s view of this situation was that we tend to ask the wrong questions and so
to misdirect our effort when we undertake research in these areas. Instead of trying to
quantify our investigations, he thought, we would better succeed if we sought qualita-
tive conclusions: the aim should be not so much to measure as to classify. The title of
his paper comes from a paradigm that is widely regarded (particularly in continental
Europe) as having provided a successful methodology in some of the social sciences,
most notably Linguistics and Anthropology.

This is an approach known as ‘Structuralism’, and commonly regarded as deriving
from the linguistic researches of Ferdinand de Saussure (1857–1913). According to
Saussure, language is a structure whose component parts can only be understood as
the set of relations between them. They have no intrinsic meaning in themselves; the
concept named and the word we use to name it hold no necessary relation one to the
other.

Even the boundaries between words can exhibit a certain arbitrariness. Our En-
glish language distinguishes the words ‘bloom’ and ‘broom’, and assigns them differ-
ent meanings, but to Japanese speakers they sound the same. This is because English
and Japanese employ different structures in the formation of their words. [In contrast,
we are unable to differentiate the two different ‘-ch-’ sounds which the Chinese distin-
guish from one another.]

Saussure is often described as having stressed the synchronic aspects of language
(the structure of the language at a particular time) rather than the diachronic (the course
of linguistic evolution over time).

His ideas were embraced and extended by the émigré Russian linguist Roman
Jakobson (1896–1982). Among Jakobson’s concerns was the area of ‘linguistic typol-
ogy’, in which languages are grouped into families on the basis of their similarities of
structure, rather than on their ancestry. Thus both Hungarian and Basque are classified
as ‘agglutinative languages’ although there is no known historical connection between
them. (Basque has no known relatives!) Agglutinative languages are languages in
which words are in fact not the basic elements that they are with us, but rather are
formed by the joining together of smaller elements called ‘morphemes’.

Such work has practical consequences. In an agglutinative language, the basic phi-
losophy required to devise a spellcheck will be different from what we would use for
English (say), which is not agglutinative. However, if a spellcheck proved success-
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ful with Hungarian, then the philosophy underlying it could be adapted for use with
Basque. For more on this question, see

http://arxiv.org/abs/cmp-lg/9410004
Jakobson in his turn influenced the anthropologist Claude Lévi- Strauss (1908– ),

whose friendship with the mathematician André Weil (1906–1998) led to one of the
most widely quoted successes of Structural Anthropology. This was a classification of
the way in which incest taboos work in traditional societies.

By far the best account of this is the article by my friend and colleague Hans Lausch
in Function, Vol 4 P3 1980. This is much more accurate and lucid than other more
widely available versions, including that in Kemeny, Snell and Thompson’s text Intro-
duction to Finite Mathematics. I will summarize Lausch’s treatment here, although in a
somewhat amended form, but readers are urged to try to find the original, which goes
much further and provides much more detail than I do.

The structure of a people or tribe obeys six axioms, of which the first five are:

1. Each member of the community belongs to exactly one of n sub-communities, or
‘clans’, here called α, β, γ, . . . , ν for reference;

2. To each clan, α say, is assigned one other (different) clan Wα, from which a man
of clan α may choose a wife, and women who are not of clan Wα may not marry
a man from clan α;

3. The children of such a marriage will belong to yet another clan Cα, different from
both α and Wα;

4. Men from a particular clan may not marry women from the same clan;

5. Children of the same family/tribe whose fathers are from different clans will
themselves belong to different clans.

We may then set up an algebra based on the relations W and C. Here W means
‘wife of’ and C means ‘child of’. These two elements have inverses W−1, meaning
‘husband of’, and C−1, meaning ‘father of’. [The stress on the male in these axioms
and notations is incidental; we could equally well, with small adjustments, begin with
the women.] A string of W ’s and C’s defines a relationship unequivocally. Thus WC−1

is ‘father’s wife’ (read the strings from right to left), i.e. ‘mother’; CWC−1 is ‘mother’s
son or daughter’, i.e. ‘sibling’; C3 is ‘son’s son’s child’; and so on.

The sixth and final axiom states that

6. It is the type of relationship, not the specific clan, that determines the societal struc-
ture. [The relationships between W,C are independent of the values of the letters
that follow.]

Thus, if C2α = α for any one clan α, then C2β = β for any other clan, β say. Under
these six axioms, the elements W and C generate an algebraic structure known as a
‘permutation group’. Different societies conform to different permutation groups, and
we can classify the society according to which permutation group it has adopted.
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The simplest possible society would have a three-clan structure, and readers might
like to see how this would work out. [Up to change of notation, there is only one pos-
sibility.] Somewhat more complicated are four-clan societies, of which one example is
the Kariera of Australia’s Northwest. Here there are the following clans: Karimera,
Palyeri, Burung and Banaka. I will term these α, β, γ, δ respectively. The clan interrela-
tions are Wα = β,Wβ = γ,Wγ = δ,Wδ = α;Cα = γ, Cβ = δ, Cγ = α,Cδ = β. Know-
ing these equations enables us to form a complete picture of the kinship system of the
Kariera, and readers may care to explore this further. (For example, an α (Karimera)
man will have γ (Burung) sons, and their sons in turn will be Karimera, etc.) [One of
the defects of the account by Kemeny, Snell and Thompson is that they seem to get
Kariera society wrong; they also present their axioms in a way that is at variance with
the anthropological literature; and when they come to discuss the Tarau, a tribal soci-
ety from Manipur state in India, they allow oedipal (mother-son) marriages, which is
surely incorrect.]

Notice that here we have no explanation of why the Kariera adopt this particular
permutation group, whereas the Arrerente, for example, adopt another. What we do
have, however, is a set of axioms that applies widely to traditional societies and a set of
particular cases that describe different societies, but all following the six basic axioms.

The situation is not at all unlike that with which we are familiar in Geometry. We
do not really explain why the base-angles of an isosceles triangle are equal. Rather we
say that it follows directly from the axioms of Euclidean geometry that they are. Or to
give a more subtle example, we have geometric axioms that allow different realizations
as Euclidean, Lobachevskian or Riemannian geometries, just as different societies end
up adopting different permutation groups.

It was this example of Geometry that inspired Thom. When he considered Em-
bryology, as he did on many occasions, he seemed to see the possibility that from the
mass of experimental data there could be extracted some basic rules that could form
an axiomatic basis for the discipline. The rest would be mathematical deduction.

The goal, he was concerned to stress, is ‘the reduction of arbitrariness’: we seek,
not so much explanation as efficient description. Such efficient description was envisaged
as being mathematical. In fact, Thom is on record as saying that ‘the only possible
theoretization is mathematical’.

This approach produces a quite different sort of theory from those of Classical Me-
chanics, for example. In that more familiar case, the underlying assumption is that the
quantities under discussion (force, mass, acceleration, etc.) can all be measured and it
is the concordance between measured results of experiments and the values predicted
by the theory that validates the enterprise. Structuralist theories, by contrast, content
themselves with a summary of a given situation (say the clans of Kariera society) and
the location of this summary in an overall theoretical system. They are descriptive
rather than predictive.

This difference is one that causes controversy. On one occasion, Thom clashed with
Francis Crick, the co-discoverer of the structure of the DNA molecule. According to
Crick (in his book What Mad Pursuit), Thom queried some of Crick’s work ‘because
it did not comport with mathematical theory’. Crick went on to the judgement that

4



Thom did not understand how Science worked and ‘what he did understand he didn’t
like, and referred to it disparagingly as ‘Anglo-Saxon’ ’.

The incident would seem to have occurred at the fourth Serbelloni conference.
Thom’s point of view is set out in a footnote to his paper Structuralism and biology.
Thom is concerned to develop an analogy between the genetic code and Saussure’s
linguistic notions. For Thom, ‘the present contention of molecular biology, that the
genetic code explains morphogenesis [is] ill founded: it amounts to saying that deci-
phering the alphabet of an unknown language suffices to understand it’.

With the wisdom born of hindsight, we can say that Crick won this particular skir-
mish. What Thom overlooked was the potential of a code to modify itself. Computer
programs provide a clear example. We can embed in the program an instruction to do
something or other under certain conditions (IF statements and the like). This corre-
sponds to the power of some genes to turn on and off at certain times in the develop-
ment of the organism they are encoded for. This is exactly the progress of morphogen-
esis.

Indeed Thom’s example is actually and ironically rather unfortunate. There is a
linguistic parallel for exactly the sort of thing he disbelieved, although it comes from
diachronic, rather than synchronic, linguistics. But when the alphabet (or more pre-
cisely the syllabary) of the ancient language Hittite was deciphered, it became clear
that Hittite was an Indo-European language, and this realization enabled it to be trans-
lated!

However, the fact that Crick won the battle does not mean that Thom lost the war!
The successes that Mathematics achieved with Physics and Astronomy have come
about because these areas of study are relatively simple – simple, that is, when we
compare them with the biological or the social sciences. The number of variables in
these disciplines is so large, and their interactions are so complex, that it is unlikely
that simple and accurate predictive models will ever be found to deal with them. If
progress is to be made in a mathematical account of such a science, then the general
principles of Thom’s program will need to be realized in some way or other.
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