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How to make a contact lens

Adelle Coster1

Recently a colleague from the Optometry school came to me with a problem. He
had designed a new shaped contact lens. Unlike other lens systems this was not de-
signed as an optical lens, but rather as a shaping lens, designed to be put in overnight.
It will reshape the front of the cornea which is the transparent portion of the outer
fibrous coat of the eyeball that covers the iris and the pupil.

The cornea itself is not spherical, but rather ellipsoid. It protrudes more than its
width. Given that the contact lens sits at the apex of the cornea, and is round, we can
simply consider the problem in the plane slicing down the middle of the eyeball.

He wanted to make a symmetrical lens comprised of several segments, the BOZR
(Back Optic Zone Radius, the central segment), P1 (Peripheral Curve 1) and P2 (Pe-
ripheral Curve 2) which are elliptical, and segment T (Tangential) which is a straight
section meeting the cornea at a tangential point. The specification of the lens is defined
by the properties of ellipses, for the elliptical segments, and the angle at which the
tangent meets the central axis of the lens for the tangential segment.

In order to work out the specifications for the lens segments, we need to build a
mathematical model of the cornea-lens system. As the system is circularly symmetric
around the central point of the lens, we only have to consider the model in the positive
quadrant.

Figure 1 shows the model for the cornea-lens system. The particular values in
which he was interested were hB = 0.04mm, h1 = 0.008mm, h2 = 0.005mm and
h3 = 0.02mm, with corresponding d1 = 2.5mm, d2 = 3.15mm and d3 = 4.15mm.

Some extra information will be needed in order to fully specify the lens. We need to
know the geometry of the cornea itself, and also further specify some of the parameters
of the lens segments.

The Cornea
The cornea can be considered to be an ellipse. This is centered at the origin with

semi-major (x) axis aC , semi-minor (y) axis bC , as shown in Figure 2. Mathematically,
this is described as

x2

a2C
+

y2

b2C
= 1.

The ellipse has eccentricity,

e2C = 1−
b2C
a2C

,

1Adelle Coster is an applied mathematician at the University of New South Wales.
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Figure 1: Model for the cornea lens system.
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Figure 2: Portion of an ellipse with shape factor pC .

and thus a shape factor

pC = 1− e2C =
b2C
a2C

.

In optometry, lens designers do not use semi-major and -minor axes, but rather a
quantity termed the apical radius, R0C . This is defined as

R0C = pCaC .

In order to position our lens segments, we need to be able to describe the horizontal
location x on the ellipse, for any given vertical displacement y:
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x2

a2C
+

y2

b2C
= 1

x =

√

a2C −
a2Cy

2

b2C

x =
1

pC

√

R2
0C − pCy2

Sowe can completely specify the corneal points (xC0, 0), (xC1, d1), (xC2, d2) and (xC3, d3).
An Elliptical Lens Segment
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Figure 3: Typical elliptical lens segment.

Consider a typical lens segment, with endpoints (xLa, da) and (xLb, db), shown in
Figure 3. This is located on an ellipse, centered at (xL, 0):

(x− xL)
2

a2L
+

y2

b2L
= 1.

It has shape factor pL and apical radius R0L. However, we do not know both these
values, but rather that the ellipse has to pass through the endpoints of the segment. So
we need to be able to specify pL and R0L in terms of these.

If we rearrange the equation for the lens ellipse (as for the cornea) we have

x = xL +
1

pL

√

R2
0L − pLy2.

We can define the x endpoints xLa and xLb both in terms of the lens segment ellipse
and as offsets from the cornea points xCa and xCb:

xLa = xL +
1

pL

√

R2
0L − pLd2a = xCa + ha (1)
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xLb = xL +
1

pL

√

R2
0L − pLd

2
b = xCb + hb (2)

Subtracting, (1) - (2),

1

pL

√

R2
0L − pLd2a −

1

pL

√

R2
0L − pLd

2
b = xCa − xCb + ha − hb

√

R2
0L − pLd2a −

√

R2
0L − pLd

2
b = pL (xCa − xCb + ha − hb)

Solving this for R0L, assuming pL is known,

R0L = ±
1

2C

√

(

pLC2 + (da − db)
2) (

pLC2 + (da + db)
2)

where C = xCa − xCb + ha − hb.
Given that R0L is the apical radius, this will be given by the positive answer.
Conversely if you want to specify R0L and calculate pL,

pL =
− (d2a + d2b)± 2

√

d2ad
2
b + C2R2

0L

C2
,

Again, one answer will be negative. Given that the shape factor is pC =
b2
C

a2
C

, a

negative value implies an imaginary semi-major or -minor axis. This would, instead of
being an ellipse, be a hyperbola. Check for yourself to see whether the analysis works
for a hyperbolic lens segment. The centre point of the ellipse is given by rearranging
(1):

xL = xCa + ha −
1

pL

√

R2
0L − pLd2a

given that you now know all the variables.
The Elliptical Lens Segments
You can then use the above to calculate the values for each of the lens segments.

Lens Ellipse Centre Shape Apical End Cornia
Factor Radius Points Points

BOZR (x−xB)2

a2
B

+ y2

b2
B

= 1 (xB, 0) pB =
b2
B

a2
B

R0B (xB0, 0), (xC0, 0),

(xL1, d1) (xC1, d1)

P1 (x−xP1)
2

a2
P1

+ y2

b2
P1

= 1 (xP1, 0) pP1 =
b2
P1

a2
P1

R0P1 (xL1, d1), (xC1, d1),

(xL2, d2) (xC2, d2)

P2 (x−xP2)
2

a2
P2

+ y2

b2
P2

= 1 (xP2, 0) pP2 =
b2
P2

a2
P2

R0P2 (xL2, d2), (xC2, d2),

(xL3, d3) (xC3, d3)
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Tangential Lens Segment
The tangential lens segment is given by a straight line, with slope equivalent to

the gradient of the cornea at the point of contact, as shown in Figure 4. It also has an
endpoint joining the last elliptical lens segment at (xL3, d3). We need to be able to tell
our lens manufacturer the angle θ that the tangential segment makes with the x axis,
also shown in Figure 4.
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Figure 4: Typical tangential lens segment.

As we saw previously, the cornea is described by

x2

a2C
+

y2

b2C
= 1

Differentiating this we have

2x

a2C
+

2y

b2C

dy

dx
= 0

dy

dx
= −

2x

a2C

b2C
2y

= −pc
x

y

If we specify that we want the point of contact to be at a y-displacement dT , then
the x-coordinate, xT , is given by

xT =
1

pC

√

R2
0C − pCd

2
T

as it lies on the cornea ellipse.
The tangential line is y = mx+ b. Thus the slope, m, is

m =
dy

dx

∣

∣

∣

∣

(xT ,dT )

= −pC
xT

dT
= −

1

dT

√

R2
0C − pCd

2
T

We need the slope of the line between (xL, d3) and (xT , dT ) to be the same as the gradi-
ent of the ellipse at (xT , dT ).
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i.e.
dT − d3

xT − xL3

= −
1

dT

√

R2
0C − pCd

2
T .

Solving for dT (and recalling that xT is also dependent on dT ),

dT =
R0C

pCd3

(

R0Cd
2
3 ± xL3d3

√

pC (−R2
0C + pC (x2

L3pC + d23))

(x2
L3pC + d23)

)

Again there are two values, only one of which is physically possible. (One may occur
in the middle of one of the elliptical segments).

Once you have dT you can then work out m, and from m the angle:

tan θ = |m| =
1

dT

√

R2
0C − pCd

2
T

where θ is the angle between the tangent line and the x-axis. (You need the absolute
value as we have a negative slope).

Finishing Up
So, can we now give our optometrist the specifications he needs to build his lens?

See if you can work out the specifications for the lens given the following information.
R0C = 7.668mm, pC = 0.5239, R0B = 7.198mm, R0P1 = 7.500mm and pP2 = 0.5300,
with hB = 0.04mm, h1 = 0.008mm, h2 = 0.005mm and h3 = 0.02mm, d1 = 2.5mm,
d2 = 3.15mm and d3 = 4.15mm.

What happens if you change R0P1 to 7.198mm? What is the shape of the lens seg-
ment? Does the theory still hold?
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