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Solutions to Problems 1191–1200

Q1191. Let ABC be a triangle with sides a, b, c in the usual way and let r be its cir-
cumradius.

(i) Show that 3r >
a + b + c

2
.

(ii) Let P be any point within ABC, and let r1 be the circumradius of ABP. Is it true
that r1 < r?

ANS:

(i) Clearly AO + OB > AB and so AB < 2r. Similarly BC < 2r and CA < 2r.Hence

3r >
a + b + c

2
.

(ii) By taking P inside the triangle and close to the side AB, we can make r1 as large
as we please. Hence it is not true that r1 < r, for every position of the point P.

Q1192. Three circles with centres O1, O2, O3 and of equal radii r, all pass through
a point P. Let their second points of intersection be A, B, C. Show that O1, O2, O3 is
congruent to ABC.What is the circumradius of ABC? el

ANS: (submitted by Ildar Gaisin, Year 11, All Saints Anglican School, 2006).
Let A, B and C denote respectively the second point of intersection of the circles

with centres O1 and O2, O1 and O3, and O2 and O3, as shown in the diagram. Clearly,
then

O1P = O2P = O3P = O1A = O1B = O2A = O2C = O3B = O3C = r.

Hence the quadrilaterals O1AO2P , O2CO3P and O3BO1P are rhombuses, implying
that O1A‖O3C, O2C‖O1B1 and O3B‖O2A. Thus the quadrilaterals O1ACO3, O2CBO1,
and O2ABO3 are parallelograms. Hence, we must have O1O3 = AC, O1O2 = BC, and
O2O3 = AB. Therefore ∆O1O2O3 is congruent to ∆ABC, as desired. Finally, since
O1P = O2P = O3P = r, it follows that the circumradius of ∆ABC is r.
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Q1193. ABCD is a trapezium with AB ‖ DC and AD = AB + DC. LetM be a point
on AD such that AM = AB.

(i) Prove that ∠BMC is a right angle.

(ii) Let F be the midpoint of BC. Prove that ∠AFD is also a right angle.

ANS:

(i) ABM and MDC are isosceles triangles and so ∠AMB = ∠ABM = α and
∠DMC = ∠DCM = β.

Since ∠MAB + ∠MDC = 180◦, it follows that ∠AMB + ∠DMC = 90◦.

Hence ∠BMC = 90◦.

(ii) This is a beautiful proof from Marianne Bruins, Hornsby Girls High School, 1997.

Since ∠BMC = 90◦, it follows that F is the centre of a circle through B, M, C.

Thus FB = FM = FC.

NowMFCD is a kite and so its diagonalsMC andDF are perpendicular at their
point of intersection, X, say.

Similarly ABFM is a kite and so its diagonals AF and BM are perpendicular at
their point of intersection Y, say.

Now three of the angles of the quadrilateralMY FX are right angles and so the
fourth angle XFY = ∠AFD = 90◦, as required.

Q1194. In the triangle ABC, M is the midpoint of BC. Points X on AB and Y on AC

are such that XY ‖ BC. Show that BY and CX intersect at a point P on AM.

ANS 1:

Let P be the intersection of BY and CX and let AP meet BC at the point N.

It is our plan to prove that N is the midpoint of BC.

First the triangles BXC and BY C have the same base BC and the same height,
since XY ‖ BC.
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Hence, subtracting BPC, it follows that the trianglesBXP andCY P have the same
area.
Now AXY is similar to ABC, since XY ‖ BC.

Hence
AX

BX
=

AY

Y C
.

Now
APX

BPX
=

AX

BX
=

AY

Y C
=

APY

CY P
.

Since BXP and CY P have the same area, it follows that APX and APY have the
same area.
Hence ABP = APX + BPX has the same area as ACP = APY + CY P.

Since these two triangles have the same base AP and the same area, they must have
the same perpendicular heights.
Let BD and CE be perpendicular to AN extended, as in the diagram.

A

X Y

B C

E

D

P

N

•

Consider the triangles BND and CNE.

First BD = CE, from the above argument.
Next ∠CEN = ∠BDN = 90◦ and ∠BND = ∠CNE.

Hence BND and CNE are congruent and so BN = NC, as required.
ANS 2: This answer was suggested by Ildar Gaisin, Year 11 All Anglican School,

2006.
Since XY ‖BC it follows that ∆AXY is similar to ∆ABC. Hence

AC

AB
=

AY

AX
=

AC − AY

AB − AX
=

CY

BX
,

implying CY · AX = AY · BX . Now because M is the midpoint of BC, BM = CM

and thus
BM · CY · AX

CM · AY · BX
= 1.

By Ceva’s theorem AM , BY and CX are concurrent.
Editor’s Note: The above solution is a beautiful application of Ceva’s theorem,

which can be stated as follows:
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Let D, E and F be 3 points on sides BC, CA and AB of a triangle ABC. Then AD,
BE and CF are concurrent (i.e. they intersect in a single point) if and only if

BD · CE · AF

DC · EA · FB
= 1.

In fact the proof in Answer 1 is along the line of the proof of this theorem. More
information on this theorem can be found in

http//mathworld.wolfram.com/CevasTheorem.html

Q1195. Two circles intersect at A and B and l is a variable line through A which
intersects the circles at X and Y, respectively.

(i) Show that as l varies, all the triangles XBY will be similar to each other.

(ii) Find out how to draw l such that

(a) XY is as long as possible, and (b) A is the midpoint of XY.
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ANS:

(i) Let X1AY1 be another line through A with X1 on the first circle and Y1 on the
second circle.

Then ∠AXB = ∠AX1B on the same arc, while ∠AY B = ∠AY1B for the same
reason.

HenceXY B is similar to X1Y1B.

(ii) (a) Since the triangles are all similar, fixing XY B for a minute,

X1Y1 =
XY

Y B
Y1B.

Now X1Y1 is a maximum when Y1B is maximal, and this occurs when BY1

is a diameter.

So we get the longest XY when we take X and Y such that BX and BY are
diameters of their respective circles. (It is an easy exercise to see that XAY

is a straight line and then XY is of maximal length.)

(b) Take any such triangle XY B and letM be the midpoint of XY.

Now joinMB.

Let Y1 be chosen on the circle such that ∠BAY1 = ∠BMY.

Now extend Y1A to X1 as in the diagram.

Then X1Y1B is similar to XY B and so A is now the midpoint of X1Y1.

Q1196. ABC is a triangle, ma is the median from A to the side BC = a.

(i) Show thatma <
1

2
(b + c).

(ii) If p is the perimeter of ABC then

3

4
p < ma + mb + mc < p.

ANS:

A

B

C

M

D

b

c

ma
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(i) See the figure where the line throughAM has been extended toD such thatAM =
MD and BD andDC are joined by lines.

SinceM is the midpoint of BC and AD, it follows that ABCD is a parallelogram
and so BD = b.

Now AB + BD = b + c > AD = 2ma.

(ii) Similarly c + a > 2mb and a + b > 2mc.

Adding we get that 2p > 2(ma + mb + mc) and this completes half the inequality.

For the other half, let X be the intersection point of the three medians of ABC.

Then

AX =
2

3
ma, BX =

2

3
mb, CX =

2

3
mc.

Now AX + XB = 2

3
(ma + mb) > AB = c.

Similarly 2

3
(mb + mc) > a and 2

3
(mc + ma) > b.

Adding we get that 4

3
(ma + mb + mc) > a + b + c = p. This is the required result.

Q1197. Given a circle, centre 0, radius r, and a point P outside the circle, construct a
line through P meeting the circle at the points A and B such that PA = AB.
ANS:

LetM be the midpoint of OP, and let an arbitrary line through P meet the circle O

in point X . Let Y be the midpoint of PX.

Then the triangles XOP and Y MP are similar. It then follows thatMY = 1

2
r.

If we let X traverse the circle with origin O then the midpoint of the line XP at Y
will describe a circle with origin at M with radius = 1

2
r. We may consider this circle

as having been obtained from O by a similarity transformation, centre P. CircleM and
circle O intersect at point A and PA extended meets the circle O at B. (As it is clear
from the figure, there are two solutions.)

X

B

0 PM

A

Y

Q1198. Given two intersecting lines ℓ and m and a point P not lying on either line,
construct a straight line through P meeting ℓ in A and m in B such that P is the mid-
point of AB.

ANS:
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Let ℓ intersectm atC.Draw a line through P parallel tom,meeting ℓ atA1. Similarly,
let PB1, parallel to ℓ, meet m at B1. Let the diagonals of the parallelogram CA1PB1

meet at P1. Then P1 is the midpoint of A1B1 and any line segment parallel to A1B1,

cuts ℓ andm at two points such that their midpoint is on the line CP. So the answer is
draw a line through P parallel to A1B1.

C

A1

ℓ

A
P

B

m

B1

p1

Q1199. Given a △ABC, construct a square XY ZU such that side XY lies along BC,
while vertex Z is on AC, vertex U on AB.

ANS:

We construct a square BCDE, external to the triangle, on the side BC. Join D and
E to the opposite vertex A, meeting BC at Y and X respectively. Erect perpendiculars
to BC at X and Y , meeting AB at U, AC at Z. The quadrilateral UZY X is centrally
similar to the square BCDE, therefore it is itself the required square.

B

E

U

A

Z

X Y C

D

Q1200. The ‘Happy Ending’ Problem.
Given any five points in the plane with no three points lying on a straight line show

that it is always possible to select four of the points as vertices for a convex quadrilat-
eral. (Note that a quadrilateral is convex if any two points inside the quadrilateral can
be connected by a straight line segment that does not fall outside the quadrilateral.)

ANS: The answer provided below is from the article “The ‘Happy-End’ Problem” by
D. Harvey in Parabola Vol 38 No 1 (2002) 5–9.
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Esther’s elegant proof of this fact proceeds as follows. First we have to construct
the ‘convex hull’ of the five given points. The easiest way to visualise this is to imagine
that the points represent nails sticking out of a wooden board, and that we stretch an
elastic band around the nails. The convex hull is the polygon formed by the elastic
band.
In Figure 1(a), the boundary of the convex hull includes all five points, so it is a

pentagon. In this case, we can choose any four points we like, and they will form a
convex quadrilateral.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

Figure 1(a)
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Figure 1(b)

In Figure 1(b), the boundary of the convex hull only includes four of the points,
with the last remaining point strictly inside the convex hull. In this case, we obviously
choose the four points on the outside to be our convex quadrilateral.
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Figure 1(c)

A
B

C

L

D
E

In Figure 1(c), we have the trickiest situation. Here the convex hull only includes
three of the points (say A, B, and C), with the remaining two points (say D and E)
strictly inside the convex hull. Let L be the line joining D and E. Since the five points
are in general position, the line L cannot include any ofA,B or C. It is fairly easy to see
that two of the external points (in this case, A and B) must lie on one side of L, and the
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other point (in this case C) must lie on the other. Therefore, the two interior points, and
the two points which lie on the same side of L, together form a convex quadrilateral,
as shown in Figure 1(c). This completes the proof!
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