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Fitting Lines to Data
Bill McKee!

Introduction

We sometimes see in newspapers or on television situations where a straight line
is drawn so as to approximately fit some data points. This can always be done by
eye, using human judgment, but the results would then tend to vary depending on the
person drawing the line. This article presents a rational way of constructing such a
line of best fit and then goes on to generalise this to fitting other types of functions to
data points.

In mechanics, Hooke’s law states that the increase in length of a spring is propor-
tional to the force applied to extend it. This is only an approximation applicable when
the extension is relatively small. Suppose now that we were to perform an experiment
in which we measured the extension of the spring (call it £) for various values of the
applied force (call this F) and plotted the results on a piece of graph paper or on a
computer screen. These will not in general lie exactly on a straight line and there are
two main reasons for this. Firstly, Hooke’s law is only an approximation to physical
reality. Secondly, all experimental data are subject to errors. However, unless there is
something horribly wrong with our experimental technique, we would expect that our
data points would lie close to a straight line. We would want to find such a line, the
slope of which is a measure of the constant of proportionality in Hooke’s law.
Reminder - The Sigma Notation for Summation

If m is less than or equal to n (usually written as m < n) we use a shorthand notation
to indicate sums of quantities as follows:

n
E Qi = Qm, + Qg1 + ...+ ap.
=m

Often m = 0 or 1. Thus a polynomial of degree n can be written as

> bt =bo+ bz + b’ + ..+ by
i=0
The use of this sigma notation is quite standard and saves writing long strings of
symbols.
Linear Least-Squares Fitting
Rather than use £ and F, let us use = and y and suppose that we have n data points
(wi,y;) for i = 1,...,n. We now want to find a straight line y = a + bz which best fits
the data in some sense. The first thing to do is to decide what we mean by a good
fit to the data. Suppose that we intended to use our line to estimate y for values of
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x which were not in the data (e.g. estimating £ for values of F at which we did not
have measurements). This is a common situation. We would hope that the difference
between the true, but unknown, value of £ and the value given by our predictive for-
mula would be small so it makes sense to consider the differences between the values
of y predicted by our straight line fit and the measured values y; at each of our data
points z;. If we could make these small in some sense, we might expect that the errors
in our formula would be small for other values of = too. Hence we are led to consider
the errors defined by

There are n of these and they all depend on a and b. We want to choose a and b to
make the F; small in some sense. We could choose a and b to make our straight line
pass exactly through two points but this would generally lead to large errors at the
other data points. The values of ¢ and b would also depend on which particular two
points we chose. This is not a sensible strategy. Instead, it makes sense to consider the
quantity ¢ defined by

Q=E’+E+.. . +E}=)Y E?=> {yi—a—bx;}". 1)
=1 =1

This is an overall measure of how good the approximation is at the data points. We
now want to choose a and b to make it as small as possible. In passing, we should
note that it makes no sense to consider > " | E; since large positive and negative errors
could cancel out. We could try to minimise ., | E;| but that leads to a much harder
problem.

You will be familiar with the problem of minimising a function of one variable, say
f(z). We know that the minima occur where the derivative f'(x) is zero and that there
are tests for determining if such points are relative maxima, minima or neither. It is
similar here. () is a function of two variables a¢ and b and the minimum will occur
when the derivatives of () with respect to a and b are both zero. So, differentiating @
with respect to @ and setting the result to zero gives

> (=2)(yi —a —bx;) = 0. 2)
=1
Similarly, differentiating ) with respect to b and setting the result to zero gives
Z(—2xi)(yi —a—bx;) =0. (3)
i=1

Re-arranging these and noting that > " , @ = na, leads to what are known in the

trade as the normal equations:

na+b Zn: T = Zn: Yi )
=1 =1

and a i x; +0b i ri = i iYi ()
=1 =1 =1
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This is a simple system of two simultaneous linear equations for a and b. The coef-
ticients are all known since the z; and y; are the known data points. You should all be
able to show that the solution is

o = A w) - O aw)(Y ) ©
and b = A{”(Z%yz)—(zfz)(zyz)} (7)

where
1

n(Xi wd) — (i @)
In passing, let us consider what would happen if we were to set b = 0 in (1). We

would then be trying to approximate our data by a constant. () would then be a func-
tion only of a and only (2) with b = 0 therein is relevant. This has the solution:

1 n
CLZE;%

i.e. the best least-squares approximation of the data by a constant is just the average of
all the y values. This seems eminently reasonable.

We also need to convince ourselves that we have, in fact, minimised (). There are
tests for this which are generalisations of the second derivative test for functions of one
variable. These are the material of second-year University courses and are too compli-
cated to discuss here. It should be rather obvious that solving the normal equations
will give us a minimum rather than a maximum since we can make () as large as we
like by choosing very large values of a to make the line y = a + bz pass nowhere near
any of the data points.

The process we have just described of fitting a straight line to data by minimising
(@ is called linear regression by statisticians. It should be noted that our line of best
fit will not, in general, pass through any of our data points. Thus, in our Hooke’s law
example, we know that £ = 0 when F = 0 yet our line of best fit need not pass exactly
through this point.

OK, so far, so good. Let us see how this works in a specific example. Consider the
following data:

A:

z; 11.0]20|30]40]50]|60| 70| 80| 9.0]10.0|11.0
y; | 1.3 135 (142]50|7088]10.1|125|13.0| 15.6 | 16.1

Feeding these numbers into (6) and (7) gives the best least-squares fit to the data as

y = —.2763636364 + 1.517272727x (8)



20

Figure 1: The crosses represent the data shown in the table and the straight line is the
least-squares fit obtained by minimising () as defined by equation (1).

This is shown in Figure 1 and the fit is seen to be quite good in this case. Going
back to our mechanical example, supposing that x = F and y = £ we could use (8) to
predict £ given F. On the other hand, we might want to predict 7 given £. One way
of doing this would be to solve (8) for z as a function of y to give

zr = (y + 0.2763636364)/1.517272727 = .6590772919y + .1821449971 )

An alternative strategy would be to reverse the roles of x and y from the beginning
and so seek a line of the form
r=oa+ [y

where « and 3 are chosen to minimise

W = Z{xi—a—ﬁyi}z. (10)

It is not necessary to work this all out again. All we have to do is swap the z; and y;
in (6) and (7) and replace a by « and b by 3. Doing this, we find the best least-squares
tit as

x = 2387715344 + 6526623390y (11)



which is different from (9). On reflection, this is not at all surprising since the two
equations were obtained by minimising the different quantities () and W. In this par-
ticular example, the two lines are remarkably similar. In fact, we have not plotted the
line given by (11) on Figure 1 since it is so close to that given by (8) that it is hard for the
eye to distinguish them. The basic reason for this similarity is that the given data do, in
fact, lie quite close to a straight line. If we now consider another data set for which the
data points lie not so close to a straight line, things are somewhat different, as shown
in Figure 2. In this example, the z; are measurements of my systolic blood pressure and
the y; are measurements of my diastolic blood pressure. There is a general tendency
for one to be high or low when the other is high or low but the relationship between
the two is not nearly as marked as for the first data set and the data are more scattered.

110 115 120 125 T 130

Figure 2: Least-squares fitting of blood pressure data.The line of greater slope min-
imises W given by (10) and the line of smaller slope minimises () given by (1).

Fitting other types of functions

For any given data set of (z;,y;) values, we can always fit a straight line to the
data as described above. However, this may not be particularly sensible. For example,
suppose we had meteorological records of the atmospheric temperature measured at
Sydney airport every hour for one week. Although there will be considerable variabil-
ity in the data, we know that temperatures tend to follow a daily cycle and so fitting
the data with sines and cosines with a period of one day would probably be more
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Figure 3: The crosses give the average daily maximum temperature at Mildura airport
for each month (plotted at the middle of each month) and the solid line is the least-
squares fit obtained using equation (14).

sensible. Tidal observations are another case where we know something about the na-
ture of the data before we start. Indeed, tidal predictions are basically made this way.
There are a great many periodic components involved due to the complicated motions
of the earth, moon and sun but the periods of these are known very accurately from
astronomical theory and observations. Past tidal measurements at any given port are
then fitted with a large number of sines and cosines with these known periods and the
results are used to predict tides at that port into the future.

To see how this would be done, suppose that we wished to use our least-squares

method to fit a given data set of n data points (z;, ;) fori = 1,...,n, with a function of
the form
M
y= Ajd;x) (12)
j=1

where the ®;(z) are appropriately-chosen functions. If we were trying to fit a polyno-
mial of degree M — 1 to the data we would take ®;(z) = /"' for j = 1,..., M. Using
M = 2 with &(z) = 1, ®3(z) = 2, A} = a and Ay = b gives us the straight-line fitting
considered above. For tidal data, the ®;(x) would be sines and cosines with the periods



known to be relevant to tides. We would now choose the coefficients A; to minimise
n M
R=Y {yi—) Ajd;(z:)}. (13)
i=1 j=1

This is just a generalisation of the problem considered earlier as R is a function of
the M variables A, for k = 1,..., M. The minimum will occur where the derivative of
R with respect to A, vanishes for k = 1,..., M. This leads to a system of M simultane-
ous linear equations to solve for the M coefficients A;. This is a straightforward task
although the details will not be gone into here. Once this is done, we construct our
approximation from (12). An example is shown in Figure 3 in which the data points
represent the average daily maximum temperature at Mildura airport for each month
(plotted at the middle of each month and obtained from the Bureau of Meteorology
website at http:/ /www.bom.gov.au). The unit of time ¢t employed is one month and
the unit of temperature 7" is one degree Celsius. The curve is a least-squares fit of the

form
7t

y:Al‘i_AQCOS%t"_AgSinE (14)
which is periodic in ¢ with period 12 months. The fit is seen to be quite good.
Postscript

Least-squares fitting leads to relatively easy equations to solve for the coefficients
in (12) but is not the only way of fitting curves to data. This is an important area in
practical applications and still a topic of active research.

Exercise
If we define the average values of the z; and y; to be

T=—=) x and y=

show that the straight line fit y = a + bz with a and b determined by (6) and (7) can be
written as

y—y=>blx—x).
Hence our least-squares straight line fit passes through the point whose coordinates
are the average values of the z; and y;.



