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The Two Pillars of Metrical Geometry
N J Wildberger1

There are two really fundamental theorems in metrical geometry. One of them you al-
ready know—it is Pythagoras’ theorem. The other one is the Triple quad formula, which
you probably don’t know. These two theorems are properly the cornerstones of Eu-
clidean geometry, spherical geometry and hyperbolic geometry, and once you under-
stand them in the right way, trigonometry becomes much simpler.

This paper shows you how these two theorems flow naturally from Euclid’s geom-
etry, and lead easily to the main laws of rational trigonometry. This theory was intro-
duced in 2005 in [2], see also [3].

Pythagoras’ Theorem

According to the ancient Greeks, area—not distance—is the fundamental measure-
ment in planar geometry. Area is an affine quantity, in the sense that under dilations,
shears and other linear transformations, the ratios of areas are preserved. To measure
a line segment the Greeks constructed a square on it, and determined the area of that
square—a process called quadrature.

Note how different this point of view is to the one taught these days in schools,
where the area of a rectangle is introduced as the product of two distance measure-
ments. The Greeks considered things the other way around.

A

A

1

2

A3
25

9

34

Figure 1: Pythagoras’ theorem: 9 + 25 = 34

Let’s illustrate this with a Cartesian point of view, where the plane is modelled
on a sheet of graph paper divided into equal cells by equally spaced horizontal and
vertical lines. For simple figures, measuring area amounts to counting cells. Parallel
and perpendicular lines can also be defined easily: a line with direction (3, 2) is parallel
to a line with direction (6, 4) , and perpendicular to a line with direction (−2, 3). More
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generally, a line with direction (a, b) is parallel to a line with direction (c, d) precisely
when ad− bc = 0, and is perpendicular to that line precisely when ac+ bd = 0.

Pythagoras’ theorem is a relation concerning the areas of the three squares built on
each of the sides of a right triangle—a triangle in which two of the sides are perpendic-
ular. Figure 1 shows such a triangle with smaller squares of areas 9 and 25. The area of
the larger square can also be easily determined: subdivide it into a smaller 2×2 square
and four right triangles which form two 3 × 5 rectangles, for a total of 4 + 2 × 3 × 5 =
34. So in this case Pythagoras’ theorem amounts to 9 + 25 = 34, a result established by
counting. This case is however somewhat special, since two of the sides of the triangle
are already along the grid directions.

Figure 2 shows a more general situation in which the sides of the right triangle are
not lined up with the coordinate directions. Again you can check by simple rearrang-
ing that the three squares have areas 10, 40 and 50. And indeed 10 + 40 = 50.
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Figure 2: Pythagoras’ theorem: 10 + 40 = 50

Motivated by the idea of quadrature, we define the quadrance Q of a line segment
to be the area of a square constructed on it. To be more precise, if a line segment is
given by a vector −→v = (a, b) then we define the quadrance to be the area of the square
formed by −→v and B (−→v ) = (−b, a). Either by rearranging and counting, or by the
simple determinantal formula

det

(
a b
−b a

)
= a2 + b2

we conclude the quadrance to be

Q = a2 + b2.

If A1 and A2 are two points, then Q (A1, A2) denotes the quadrance of the line segment
between them. Then the true Pythagoras’ theorem has the following form:

Theorem 0.1 (Pythagoras) The sides A1A3 and A2A3 of the triangle A1A2A3 are perpendic-
ular precisely when the quadrances Q1 = Q (A2, A3), Q2 = Q (A1, A3) and Q3 = Q (A1, A2)
satisfy

Q1 +Q2 = Q3.
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Some of the advantages of this ancient Greek formulation of the theorem are obvi-
ous, others are more subtle. The main benefit is easy for everyone to understand—it
deals with rational numbers, not their irrational square roots. Calculating a square root by
hand is difficult, and the final result is typically only an approximation. For example,
here is the beginning of the decimal expansion of a well-known square root:

√
5 = 2. 236 067 977 499 789 696 409 173 668 731 276 235 440 618 35 . . . .

There are deep mysteries, as well as difficulties, contained in such an infinite decimal
expansion. Using quadrance instead of distance often allows us to be more accurate.
In addition, the purely algebraic form of Pythagoras’ theorem means that it extends to
arbitrary number fields, for example finite fields, or the complex numbers. We’ll see in
another paper that it also extends to Einstein’s relativistic geometry.

How do we prove Pythagoras’ theorem? Suppose that
−−−→
A1A3 = (a, b) and

−−−→
A3A2 =

(c, d), so that
−−−→
A1A2 = (a+ c, b+ d). Then the condition Q1 + Q2 = Q3 amounts to the

equation
c2 + d2 + a2 + b2 = (a+ c)2 + (b+ d)2 .

But this is equivalent to
0 = 2 (ac+ bd)

which after a division by 2 is exactly the condition of perpendicularity between
−−−→
A1A3

and
−−−→
A3A2.

Now let us turn to that other pillar of geometry.

The Triple Quad Formula

The configuration when the three points A1, A2 and A3 are collinear also plays a
special role. In this case also there is an important relation between the three quad-
rances Q1 = Q (A2, A3), Q2 = Q (A1, A3) and Q3 = Q (A1, A2) but it turns out to be
more complicated algebraically. Perhaps for this reason Euclid did not discover it, and
so it is much less well known. Figure 3 shows three collinear points and the three
squares determined by them. It is again an easy exercise to check that these areas are
Q3 = 40, Q2 = 90 and Q3 = 10.

A

A

1

2

A3

90

40

10

Figure 3: Triple Quad Formula: (10 + 40 + 90)2 = 2 (102 + 402 + 902)
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Theorem 0.2 (Triple Quad Formula) The three points A1, A2 and A3 are collinear precisely
when the quadrances Q1 = Q (A2, A3), Q2 = Q (A1, A3) and Q3 = Q (A1, A2) satisfy

(Q1 +Q2 +Q3)
2 = 2

(
Q2

1 +Q2
2 +Q2

3

)
.

This is rather more complicated than Pythagoras’ theorem, and it is helpful to write
down a simpler but less symmetrical version:

(Q1 +Q2 −Q3)
2 = 4Q1Q2. (1)

Please check, by expanding out both expressions, that they are equivalent. For the
example in Figure 3 you can check that (10 + 40− 90)2 = 4× 10× 40.

How do we prove the Triple quad formula? Suppose that
−−−→
A1A3 = (a, b) and

−−−→
A3A2 =

(c, d), so that
−−−→
A1A2 = (a+ c, b+ d). Then the condition (1) amounts to the equation(
c2 + d2 + a2 + b2 − (a+ c)2 + (b+ d)2

)2
= 4

(
c2 + d2

) (
a2 + b2

)
But this is equivalent to

(ac+ bd)2 =
(
c2 + d2

) (
a2 + b2

)
.

The famous identity of Fibonacci

(ac+ bd)2 + (ad− bc)2 =
(
c2 + d2

) (
a2 + b2

)
then shows that our condition is equivalent to

ad− bc = 0

which is exactly the condition that the vectors
−−−→
A1A3 and

−−−→
A3A2 are parallel, that is that

A1, A2 and A3 are collinear.
The proof in fact establishes a stronger result, once we recognize that the deter-

minantal quantity ad − bc is, up to sign, twice the area a of the triangle A1A2A3. An
alternate form in terms of the lengths of the sides is usually called Heron’s formula,
but it is clear from Arab sources that Archimedes knew this result.

Theorem 0.3 (Archimedes’ theorem) The area a of the triangle A1A2A3 is given in terms
of the quadrances Q1 = Q (A2, A3), Q2 = Q (A1, A3) and Q3 = Q (A1, A2) by the formula

16a2 = (Q1 +Q2 +Q3)
2 − 2

(
Q2

1 +Q2
2 +Q2

3

)
.

Spread between lines

The key idea behind rational trigonometry is to substitute the notion of spread for
the classical notion of angle. There are many advantages—a cleaner more logical de-
velopment, more accurate calculations, generalizations to relativistic geometries and
to other fields, and freedom from transcendental circular functions when dealing with
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geometry involving triangles. Angles are needed for uniform motion around a circle,
which is mechanics, and a more advanced subject than trigonometry—although mod-
ern usage tends to lump both subjects together.

The spread s (l1, l2) between two lines in the plane may be defined in terms of quad-
rance as follows. Suppose the lines meet at a pointA, andB is any other point on either
of the two lines, with C the foot of the perpendicular from B to the other line as in the
figure. Then

s (l1, l2) = s =
Q (B,C)

Q (A,B)
=
Q

P
.
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Figure 4: Spread: s = Q/P

For lines l1 and l2 with equations a1x+ b1y + c1 = 0
and a2x+ b2y + c2 = 0 the spread is the rational expression

s (l1, l2) =
(a1b2 − a2b1)2

(a21 + b21) (a
2
2 + b22)

.

The spread s is always a number between 0 and 1. It is 0 when the lines are parallel
and 1 when the lines are perpendicular. An angle of 45◦ or 135◦ is a spread of 1/2, and
30◦ or 150◦ and 60◦ or 120◦ are respectively spreads of 1/4 and 3/4. Figure 5 shows a
spread protractor that you can download from the internet [1].

Figure 5: Spread protractor

Of course you need adjust to the fact that spread is not ‘linear’, but the advantages
quickly become apparent when we look at the main laws of trigonometry expressed
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with the concepts of quadrance and spread instead of distance and angle. Transcen-
dental functions are not needed to understand triangles!

Rational Trigonometry

The next two theorems are the rational analogs of the Sine law and the Cosine law.
Both are proved completely independently from classical trigonometry.

Theorem 0.4 (Spread law) Suppose the triangle A1A2A3 has quadrances Q1 ≡ Q (A2, A3),
Q2 ≡ Q (A1, A3) andQ3 ≡ Q (A1, A2) and spreads s1 ≡ s (A1A2, A1A3), s2 ≡ s (A2A1, A2A3)
and s3 ≡ s (A3A1, A3A2). Then

s1
Q1

=
s2
Q2

=
s3
Q3

.

Theorem 0.5 (Cross law) Suppose the triangle A1A2A3 has quadrances Q1 ≡ Q (A2, A3),
Q2 ≡ Q (A1, A3) andQ3 ≡ Q (A1, A2) and spreads s1 ≡ s (A1A2, A1A3), s2 ≡ s (A2A1, A2A3)
and s3 ≡ s (A3A1, A3A2). Then

(Q1 +Q2 −Q3)
2 = 4Q1Q2 (1− s3) .

The reason for the terminology is that the quantity 1 − s3 = c3 is called the cross
between the two lines.

To prove these theorems, refer to either of the two diagrams in Figure 6.
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Figure 6: Spread law

The definition of the spreads at A2 and A3 gives

s2 = R1/Q3 s3 = R1/Q2. (2)

Solve for R1 to get
R1 = Q3s2 = Q2s3

so that
s2
Q2

=
s3
Q3

.

Symmetry then implies the Spread law.
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Using (2) and Pythagoras’ theorem, we have

R1 = Q2s3

R3 = Q2 −R1 = Q2 (1− s3)
R2 = Q3 −R1 = Q3 −Q2s3

SinceA2, A3 andD are collinear, apply the Triple quad formula to the three quadrances
Q1, R2 and R3, yielding

(Q1 +R3 −R2)
2 = 4Q1R3.

Substitute the values of R3 and R2, to get

(Q1 +Q2 −Q3)
2 = 4Q1Q2 (1− s3) .

This establishes the Cross law.
There is one more main theorem of rational trigonometry—the analog of the fact

that the sum of the angles of a triangle is approximately 3. 141 592 65 . . . ≈ π.

Theorem 0.6 (Triple spread formula) Suppose that a triangle A1A2A3 has spreads s1, s2
and s3. Then

(s1 + s2 + s3)
2 = 2

(
s21 + s22 + s23

)
+ 4s1s2s3.

To prove this, we combine the Spread law and the Cross law. From the Spread
law, there is a non-zero number D, such that if Q1, Q2 and Q3 are the corresponding
quadrances of the triangle,

s1
Q1

=
s2
Q2

=
s3
Q3

≡ 1

D
. (3)

Rewrite the Cross law

(Q1 +Q2 −Q3)
2 = 4Q1Q2 (1− s3)

in the more symmetrical form

(Q1 +Q2 +Q3)
2 = 2

(
Q2

1 +Q2
2 +Q2

3

)
+ 4Q1Q2s3. (4)

Use (3) to replace Q1 by s1D, Q2 by s2D and Q3 by s3D in (4), and then divide by D2.
The result is

(s1 + s2 + s3)
2 = 2

(
s21 + s22 + s23

)
+ 4s1s2s3.

Example 0.1 You might like to verify the main laws for the triangle with vertices A1 = [4, 1],
A2 = [1, 2] and A3 = [2, 4], with quadrances Q1 = 5, Q2 = 13 and Q3 = 10. The correspond-
ing spreads are s1 = 49/130, s2 = 49/50 and s3 = 49/65. Several other interesting facts about
this triangle are derived in [3].
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Remarkably, the five main laws—Pythagoras’ theorem, the Triple quad formula, the
Spread law, the Cross law and the Triple spread formula—suffice to solve the vast majority
of trigonometric problems, invariably in a more accurate and simpler form that the
classical theory which utilizes transcendental circular functions, as demonstrated at
some length in [2]. Tables and calculators are not generally needed. Students can learn
the new theory in a fraction of the time spent on the old one, and literally dozens of
arcane facts and formulas can be relegated to the dusty shelves where they rightfully
belong. The five main laws hold even in the geometry of special relativity. (I will
explain this in a future article.)

Rational trigonometry cleanly separates the geometry of triangles from the mechan-
ics of uniform motion around a circle. For the latter, transcendental circular functions
such as sin θ and cos θ and their inverse functions are necessary, for the former they
only complicate matters unnecessarily. The basic message: square pegs don’t fit into
round holes.
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