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History of Mathematics: Ptolemy’s Theorem
Michael A B Deakin1

This column is prompted by some correspondence with K R S Sastry, who for many
years has been active in Mathematics, particularly Geometry. He has worked in his na-
tive India and also in Ethiopia, and has contributed prolifically toMathematics journals
over many years. In his query to me, he raised the question of the origins of a geomet-
rical result known as Ptolemy’s Theorem. The theorem concerns the situation depicted
in Figure 1.
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Figure 1

A,B,C and D are points lying on a circle and so arranged that the order of points as
we traverse the circle (either clockwise or anticlockwise) is as given. (That is to say:
AB and CD do not intersect inside the circle.) The theorem then states that

|AC| |BD| = |AB| |CD|+ |BC| |DA|.

(Here I use |AB| to mean the length of AB, etc.)
The theorem is a relatively elementary one, and I will provide a proof a little later

on. Most such elementary geometric theorems are to be found in the collection that we
know as Euclid’s Elements.

Sastry’s question to me was this: Was Ptolemy the originator of this theorem, or
did he follow some earlier discoverer? This is a very reasonable thing to ask, since in a
great many cases, the mathematicians whose names become attached to results are not
in fact the discoverers.

But let us begin with some background.
Euclid lived in Alexandria (now in Egypt, but then part of the Greek empire) and

was the leading mathematician of his day (a period some years either side of 300 BCE).

1Michael Deakin is an Honorary Research Fellow in Mathematics at Monash University.
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His best-known work is the Elements, a massive collection (in 13 separate books) of
the geometric knowledge of the time. Until very recently this work formed the basis
of all school syllabuses of Geometry. It remains a towering achievement. The style
of exposition and the insistence on formal demonstration of claimed results has done
much to define the mathematical agenda for all subsequent time.

Ptolemy lived much later, in years either side of 100CE, and was a figure of compa-
rable intellectual stature. He is not generally considered a mathematician in the same
sense that Euclid was; rather he is classified as an astronomer and geographer. His ma-
jor work was a compilation of the astronomical knowledge of his day. He published
this as the Syntaxis (meaning ‘compilation’), but his contemporaries and successors
accorded it the title megiste syntaxis (‘the greatest compilation’) to distinguish it from
other works they considered inferior.

Ptolemy also lived in Alexandria, and when the Arabs later occupied this city, they
became heirs to much of its intellectual tradition. Many of the best works of the Greek
mathematicians were translated into Arabic. (In many cases, this is the only form in
which they survive.) Ptolemy’s work was translated as Al magest (‘the greatest’) and
this term was latter adopted by the Romans under the Latin name Almagestum.
In English, we refer to it still as Ptolemy’s Almagest.

There have been several English translations of this work, but the most recent and
also the best is one by the very great historian of Mathematics, G J Toomer. His fine
annotated translation first appeared in 1984. This makes it clear that Ptolemy did state
and prove the theorem. In Toomer’s translation it is to be found on p 50, but the
convention has arisen in the study of Ptolemy’s work of giving the page references
from an earlier edition (by Heiberg). So the standard reference for Ptolemy’s Theorem
is H36.

Here is Ptolemy’s proof. (Refer to Figure 1.)
Connect the point B to the line AC in such a way that the join BE makes the angle

ABE equal to the angle CBD. Then to each of these angles add the angle EBD. This
makes the angle ABD equal to the angle EBC. Now compare the triangle ABD with
the triangle EBC. The angle ABD in the first of these is equal to the angle EBC in the
second (just proved) and also the angle BDA in the first equals the angle BCE in the
second (as a result of a result proved in Euclid’s Elements (Book III, Proposition 21)).
It follows that the angles BAD and BEC must also be equal (because the angles in a
triangle must add to 180◦). Thus these two triangles are similar to one another; that is
to say, they have the same shape so that one must be a scale-model of the other. This
tells us that

|BC|

|CE|
=

|BD|

|DA|

and so |BC| |DA| = |BD| |CD|.
A similar argument can now be used to show that |AC| |BD| = |BD| |AE|. The

result follows because |AE|+ |CE| = |AC|.
There is a slight ‘gap’ in this proof. It was pointed out by Sir Thomas Heath, who

included a discussion of Ptolemy’s Theorem among the notes to his definitive edition
of Euclid’s Elements. This is illustrated by Figure 2, which shows that the point E may
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lie on the same side as C of the intersection of the two diagonals. In this case, instead
of adding the angle EBD to each of the angles ABD and CBD, we subtract. After this,
all goes well.
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Figure 2

So, apart from a minor glitch, Ptolemy certainly stated and proved the theorem that
now bears his name. But was he preceded by others? Was the result already known by
the time Ptolemy wrote?

To look into this question, we first need to know the background to Ptolemy’s in-
terest in the configuration of Figure 1. The geometry of the circle is vitally important to
the study of Astronomy and of Geography (the earth is round, and the heavens appear
so). Nowadays, we use Trigonometry to discuss many of the quantitative aspects of
Astronomy and Geodesy (the measurement of the earth), but Trigonometry had not
yet been formulated.

Consider the arc and the chord AB in Figure 1 for example. Adopt the standard
convention that the radius of the circle is 1. Then the arclength AB is simply the
radian measure of the angle subtended by this arc at the centre of the circle (not drawn

here). Call this angle θ. Then the length of the chord AB is given by |AB| = 2 sin
θ

2
.

However, back in Ptolemy’s time, the functions sin and cos had not yet been developed.
What took their place were a pair of other functions of θ, now no longer used. The first
of these is the chord of θ, which we can write chθ, where

chθ = |AB| = 2 sin
θ

2
.

(The other function used is now called the versed sine of θ, written vsθ, where in to-
day’s notation, vsθ = 1− cos θ. If you experiment with the use of the functions chθ and
vsθ in place of our familiar trig functions, you will soon see the benefits of our modern
approach!)

In place of trig tables (now replaced by calculators or computers) to supply the
values of the trig functions, the ancients needed ‘chord tables’. This is what Ptolemy
was busily involved with. His theorem, applied to various special cases enables the
construction of such tables with a reduced amount of computational time and labor.
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So, if we try to find earlier discoveries of Ptolemy’s Theorem, the sensible place
to look for them is among the chord tables produced before Ptolemy’s time. There
are two possibilities. Earlier chord tables were produced by the Greek astronomers
Hipparchus and Menelaus.

Hipparchus (of Rhodes) lived in the second century BCE, and was a major figure in
the history of Astronomy. Very little is known of his life. There was only one (minor)
work from his hand, and what little we know about his work derives from Ptolemy,
who was concerned to build upon it. Toomer has this to say:

. . . although Ptolemy obviously had studied Hipparchus’s writings thor-
oughly and had a deep respect for his work, his main concern was not to
transmit it to posterity but to use it and, where possible, improve upon it in
constructing his own astronomical system.

Menelaus lived in the years either side of 100CE andwas the author of many books,
most of which were on Geometry. Nearly all have been lost, only Sphaerica (it) sur-
vives in something like its entirety. This is a book on the geometry of the sphere, with
applications to Astronomy. (His name is now attached to a theorem about ordinary –
plane – Geometry, but that is another story!)

Both Hipparchus and Menelaus produced chord-tables, so it is possible that their
(poorly preserved) texts included accounts of Ptolemy’s Theorem. However, Toomer
argues against this idea. In a note on p 50 of his translation, he suggests that these
authors used other simpler means to the same ends. His reasons are highly technical
and take us much further afield. For this reason, I will not go into them here, but
interested readers may follow the leads given in his note.

There are some interesting theorems allied to Ptolemy’s. The most straightforward
concerns the case in which the points A,B,C and D do not all lie on a circle. Look at
Figure 3.
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Figure 3

No circle is drawn, because the points in question do not all lie on one. However,
we proceed much as we did in the earlier case. At A make an angle BAE equal to
angle BDC and at B make an angle ABE equal to angle CBD. E is the point where
the lines defining these angles meet. Now join EC.

4



The principal difference between this case and the last is that the point E now will
not lie on the line AC. We can still argue that

|BC| |DA| = |BD| |CE| and that |AC| |BD| = |BD| |AE|

although the reasoning is a little different. However, when we come to the final step,
we still find that

|BC| |DA|+ |AC| |BD| = |BD| |CE|+ |BD| |AE|.

But now because this time |AE|+ |CE| > |AC|, we have

|AB| |CD|+ |BC| |DA| > |AC| |BD|.

In my schooldays, we used a different proof of Ptolemy’s Theorem. This made use of
the Cosine Rule. As now stated, this involves the trigonometric ratios, and so would
not qualify as an early candidate. However, results exactly equivalent to the Cosine
Rule (but using different language) in fact occur in Euclid. Two separate cases occur
as Propositions 12 and 13 of Book II of the Elements. For the convenience of modern
readers, I will indulge in a minor anachronism and present the proof in modern dress.

To make the work simpler to follow, introduce the notation

|AB| = a, |BC| = b, |CD| = c, |DA| = d, |AC| = x, |BD| = y.

Write A for the angleDAB, and so on for the other angles of the original quadrilat-
eral.

Then
x2 = a2 + b2 − 2ab cosB,

by the Cosine Rule; but also

x2 = c2 + d2 − 2cd cosD = c2 + d2 + 2cd cosB,

because of the property of cyclic quadrilaterals (those inscribed in circles) that tells us
that their opposite angles add to 180◦ (Proposition 22 of Book III of the Elements). A
bit of algebra follows. I leave it to readers, but the result is that, when B is eliminated,
then

x2 =
(ac+ bd)(ad+ bc)

ab+ cd
.

Similarly y2 =
(ac+ bd)(ab+ cd)

ad+ bc
.

Now we may multiply and take a square root to find xy = ac + bd, which is
Ptolemy’s Theorem.

WhenMr Sastry wrote, he wonderedwhether the strong Indian interest in the prop-
erties of the quadrilateral might also have contributed to the story. The principal name
here is that of Brahmagupta, who lived in the seventh century CE, and thus came a
lot later than the other figures we have been discussing. His name is attached to a
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formula for the area of a cyclic quadrilateral. Write s =
1

2
(a + b + c + d) (s stands for

‘semi-perimeter’), and A for area. Then

A =
√

(s− a)(s− b)(s− c)(s− d).

It was once widely stated that Brahmagupta erroneously held that this formula ap-
plied to all quadrilaterals. Indeed I still possess a school textbook (Durell & Robson’s
Advanced Trigonometry) saying just this. However, more recent research leads us to the
view that he was in fact well aware of the restriction.

If we allow the length of one side of the quadrilateral (d say) to shrink to zero, then
the result is a triangle, and all triangles are cyclic, so the result applies to all triangles.
We in the West know this as Heron’s formula. Heron lived in the first century CE and
in his bookMetrica included the formula which we now write as

A =
√

s(s− a)(s− b)(s− c)

for the area of a triangle with side-lengths a, b, c.
It would be possible, but extremely tedious, to prove Ptolemy’s Theorem by appeal

to the Heron and Brahmagupta formulae. If you try to go down this path, you will
probably soon see the inefficiency of the process.

However, in other areas the Indian mathematicians do seem to have been the first
to find the relevant results. Earlier, to expedite a point in the discussion, I chose to
set the radius in which the quadrilateral was inscribed as 1. In general, however, this
cannot be done without restricting the sizes of the sides in some way. If we prefer to
allow general sides, subject to the cyclic restriction only, then we need a formula for
the radius, R, of the circle containing the quadrilateral.

Given a, b, c and d, and allowing the angles to be suitably chosen can always result
in a cyclic configuration, which in fact maximizes the area of the quadrilateral. This is
a special case of a result known as Fasbender’s Theorem. I wrote on it in Function in
June 1996.

The formula for R is:

R =

√

(ab+ cd)(ac+ bd)(ad+ cd)

(b+ c+ d− a)(c+ d+ a− b)(d+ a+ b− c)(a+ b+ c− d)

It was usual to attribute this result to the Swiss mathematician Simon L’Huillier (1750-
1840), but it is now recognized that it was statedmuch earlier by the Indianmathemati-
cian Parameśvara (around 1430 CE). This was pointed out by Radha Charan Gupta in
a 1977 article in the specialist journal Historia Mathematica. (I am indebted to Mr Sastry
for a copy.)

I will not give a proof here of Parameśvara’s formula. My old school text has one,
but Gupta’s article presents a different one, one which uses a result very like Ptolemy’s
Theorem along the way. It will be recognized that the denominator of Parameśvara’s
formula for R contains the elements of Brahmagupta’s area formula. The use of this
formula is a crucial part of both the proofs I have seen.
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There is much else that can be said about quadrilaterals. To explore the matter
further, look at the article on ‘quadrilateral’ at the Mathworld website

http://mathworld.wolfram.com/Quadrilateral.html
and the references given there. Readers may be surprised that so many complicated
theorems can be proved about so simple a figure as a quadrilateral, but then theymight
consider that an even simpler figure is the triangle. And whole books have been writ-
ten about that!
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