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Solutions to Problems 1221–1230

Q1221 (submitted by Frank Drost, Research Associate, School of Mathematics and
Statistics, UNSW. Edited.)

Complete the mathematical equations below by inserting the least number of math-
ematical symbols from the table

+ − × /
√

! ( )

on the left-hand side of the equation.

0 0 0 = 6
1 1 1 = 6
2 2 2 = 6
3 3 3 = 6
4 4 4 = 6
5 5 5 = 6
6 6 6 = 6
7 7 7 = 6
8 8 8 = 6
9 9 9 = 6
10 10 10 = 6

ANS:

(0! + 0! + 0!)! = 6

(1 + 1 + 1)! = 6

2 + 2 + 2 = 6

3× 3− 3 = 6

4 + 4−
√
4 = 6

5 + 5/5 = 6

6 + 6− 6 = 6

7− 7/7 = 6
√

8 + 8/8! = 6

9− 9/
√
9 = 6

√

10− 10/10! = 6
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Q1222 How many ways can n cards be dealt to two persons, given that they may
receive unequal numbers of cards but each has at least one card?

ANS: Let the two persons be A andB. For each card, there are 2 ways to deal: either
A gets the card or B gets the card. So for n cards there are 2n ways. But these include
the two cases when A or B gets all the cards. So there are 2n − 2 = 2(2n−1 − 1) ways to
deal so that each person has at least one card.

Q1223 The three angle bisectors of a triangle∆ABC cut its circumcircle at A1, B1 and
C1. Let S be the common area of ∆ABC and ∆A1B1C1. Prove that

S ≥ 2

3
area(∆ABC).

When does equality occur?

ANS:

A

B
C

A1

B1

C1

D
E

F

G H

I
K

L

MN

First we note that ∠BB1A1 = ∠BAA1 = ∠A1AC, so that

∠AKB1 = ∠KB1A1 + ∠KA1B1 = ∠A1AC + ∠KA1B1 = ∠A1IC = ∠AIB1.

So AKIB1 is a cyclic quadrilateral, which implies

∠KAB1 = ∠KIA1. (1)
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On the other hand,

∠KAB1 = ∠A1AB1 (2)

= ∠A1AC + ∠CAB1

= ∠A1AB + ∠CBB1

= ∠A1B1B + ∠CBB1

= ∠CHB1. (3)

(1) and (3) give ∠KIA1 = ∠CHB1, implying KI ‖ CH . Similarly we can prove that
KH ‖ CI , so that CIKH is a parallelogram. In the same manner, we can prove that
AEKD and BGKF are parallelograms. Therefore,

S(∆AED) = S(∆KDE), S(∆BGF ) = S(∆KFG), S(∆CIH) = S(∆KHM). (4)

Now let x = KL/AL. Then it is easy to see that

x =
S(∆KBC)

S(∆ABC)

(compare the heights of the two triangles). Also, since ∆ABC and ∆KGH are similar
triangles, we have

x2 =
S(∆KGH)

S(∆ABC)
.

Similarly, if y = KM/AM then

y =
S(∆KCA)

S(∆ABC)
and y2 =

S(∆KID)

S(∆ABC)
,

and if z = KN/CN then

z =
S(∆KAB)

S(∆ABC)
and z2 =

S(∆KEF )

S(∆ABC)
.

Therefore,

x+ y + z =
S(∆KBC) + S(∆KCA) + S(∆KAB)

S(∆ABC)
= 1

and
S1

S(∆ABC)
= x2 + y2 + z2,

where S1 = S(∆KGH) + S(∆KID) + S(∆KEF ). By the Cauchy-Schwarz inequality
there holds

1 = (x+ y + z)2 ≤ 3(x2 + y2 + z2),
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so that S1 ≥
1

3
S(∆ABC).

Now if S is the common area between ∆ABC and ∆A1B1C1 then, due to (4),

S1 + 2(S − S1) = S(∆ABC),

or

2S = S(∆ABC) + S1 ≥
4

3
S(∆ABC),

proving the desired inequality. Equality occurs when x = y = z, i.e. when ∆ABC is
equilateral.

Q1224 Let D be a point outside a triangle ∆ABC such that A and D are on opposite
side of the line BC, and that ∆BCD is equilateral. Prove that for any point M in the
same plane with ∆ABC

MA+MB +MC ≥ AD.

When does equality occur?

ANS:

A

B
C

M

D

N

By rotating∆ABC 60◦ clockwise about B, the point C coincides withD andM with
N . It is easy to see that

MA+MB +MC = AM +MN +ND ≥ AD.

Equality occurs whenM and N both lie on the line AD, i.e. M is the intersecting point
of AD and the circumcircle of ∆BCD.

Q1225 (submitted by J. Guest, East Bentleigh, Victoria) Find all the real roots of

3x5 − 40x4 + 169x3 − 271x2 + 136x− 21 = 0.

ANS: (submitted by J. Guest)
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The equation has an integral solution x = 7, so that

3x5 − 40x4 + 169x3 − 271x2 + 136x− 21

= (x− 7)(3x4 − 19x3 + 36x2 − 19x+ 3) = 0.

We now solve
3x4 − 19x3 + 36x2 − 19x+ 3 = 0,

which is a reciprocal equation. By dividing by x2 and set z = x+1/x so that x2+1/x2 =
z2 − 2 we obtain

3z2 − 19z + 30 = 0,

which has two solutions z1 = 3 and z2 = 10/3. The first value z = 3 leads to x2 − 3x +
1 = 0 which has two real solutions (3 ±

√
5)/2. The second value z = 10/3 leads to

3x2 − 10x + 3 = 0 which has two real solutions x = 3 and x = 1/3. So all the real roots
are

1

3
,

3−
√
5

2
,

3 +
√
5

2
, 3, 7

Q1226 Find the integral value of

√

6 +

√

6 +

√

6 +
√
6 + · · ·

ANS: (submitted by J. Guest, Victoria)

Let

x =

√

6 +

√

6 +

√

6 +
√
6 + · · ·,

so that
x2 = 6 + x

or
(x− 3)(x+ 2) = 0.

Since x > 0, the integral value to be found is 3.

Q1227 Consider n simultaneous equations in n unknowns x1, . . . , xn:

x1 + x2 + x3 = 0

x2 + x3 + x4 = 0

... = 0

xn−1 + xn + x1 = 0

xn + x1 + x2 = 0

1. For which values of n do the equations have a unique solution?
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2. Find the most general solution when the equations do not have a unique solution.

ANS: (submitted by John C. Barton, Victoria)

From the first two equations we deduce x1 = x4. From the second and third equa-
tions we deduce x2 = x5. Repeating the argument we obtain

x1 = x4 = x7 = x10 = · · · (1)

x2 = x5 = x8 = x11 = · · · (2)

x3 = x6 = x9 = x12 = · · · (3)

and also
xn−2 = x1, xn−1 = x2, xn = x3. (4)

If n is not a multiple of 3 then xn is in group (1) or group (2), i.e.

(xn = x1 and xn−1 = x3) or (xn = x2 and xn−1 = x1).

Using (4) we deduce x1 = x2 = x3, so that (noting that x1 + x2 + x3 = 0)

x1 = x2 = · · · = xn = 0.

If n is a multiple of 3 then xn is in group (3), and thus (1)–(4) reduce to (noting that
x3 = −(x1 + x2))

x1 = x4 = · · · = xn−2 = a

x2 = x5 = · · · = xn−1 = b

x3 = x6 = · · · = xn = −(a+ b),

(5)

for any real numbers a and b.

Therefore,

1. The system has a unique solution when n is not a multiple of 3, and the solution
is x1 = x2 = · · · = xn = 0.

2. When n is a multiple of 3, the solutions are given by (5) for any real values of a
and b.

Q1228 For any real number a, the symbol [a] denotes the integer part of a. E.g.

[2] = 2, [3.7] = 3, [−2.4] = −3.

Simplify

[a] +

[

a+
1

n

]

+

[

a+
2

n

]

+ · · ·+
[

a+
n− 1

n

]

.

ANS: First we note that a < [a]+1 ≤ a+1, so that there exists an integer k = 1, 2, . . . , n
satisfying

a+
k − 1

n
< [a] + 1 ≤ a+

k

n
. (1)
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This implies
n[a]− k + n ≤ na < n[a]− k + n+ 1,

which in turn gives
[na] = n[a]− k + n. (2)

On the other hand, for any j = 1, . . . , k − 1,

[a] < a+
j

n
< [a] + 1,

so that [

a+
j

n

]

= [a],

and for any j = k, . . . , n,

[a] + 1 ≤ a+
j

n
≤ a+ 1,

so that [

a+
j

n

]

= [a] + 1.

Therefore,

[a] +

[

a+
1

n

]

+ · · ·+
[

a+
n− 1

n

]

= [a] + · · ·+ [a]
︸ ︷︷ ︸

k terms

+([a] + 1) + · · ·+ ([a] + 1)
︸ ︷︷ ︸

n−k terms

= k[a] + (n− k)([a] + 1)

= n[a] + n− k

= [na]

where in the last step we use (2).

Q1229 A sequence of polynomials is defined recursively by

F1(x) =
x2

2
+

x

2

Fk(x) = k

(∫
x

0

Fk−1(t) dt+ x

∫
−1

0

Fk−1(t) dt

)

, k ≥ 2.

Find the constant term and the coefficients of xk and xk+1 in Fk(x).

ANS: (submitted by Julius Guest, Victoria)

Since Fk(0) = 0 for all k ≥ 1, the constant term is 0. We will prove that the coefficient
of xk is 1/2 and of xk+1 is 1/(k + 1) by using induction on k.
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The result is clearly true when k = 1. Assume that the result is true for k = l− 1, i.e.
the coefficient in Fl−1 of x

l−1 is 1/2 and of xl is 1/l. Then

Fl(x) = l

(∫
x

0

Fl−1(t) dt+ x

∫
−1

0

Fl−1(t) dt

)

= l

∫
x

0

(
tl

l
+

tl−1

2
+ lower order terms

)

dt+ lx

∫
−1

0

Fl−1(t)dt

= l

(
tl+1

l(l + 1)

∣
∣
∣
∣

x

0

+
tl

2l

∣
∣
∣
∣

x

0

+ lower order terms

)

=
xl+1

l + 1
+

xl

2
+ lower order terms .

By mathematical induction, the result is proved.

Q1230 Show that the polynomial Fk(x) defined in the previous question satisfies

Fk(x)− Fk(x− 1) = xk.

ANS: We use induction again. It is clear that the result is true for k = 1. Assume that
the result is true for k = l − 1 ≥ 1, i.e.

Fl−1(x)− Fl−1(x− 1) = xl−1.

We prove that the result is true for k = l. We have from the definition of Fl

F ′

l
(x) = l

(

Fl−1(x) +

∫
−1

0

Fl−1(t)dt

)

,

so that

F ′

l
(x− 1) = l

(

Fl−1(x− 1) +

∫
−1

0

Fl−1(t)dt

)

,

implying
F ′

l
(x)− F ′

l
(x− 1) = l (Fl−1(x)− Fl−1(x− 1)) = lxl−1

by the inductive assumption. Integrating both sides gives

Fl(x)− Fl(x− 1) = xl + c

for some constant c. Using Fl(0) = 0 (see Q1229) we find c = 0. By mathematical
induction the result is proved for all k ≥ 1.

Further notes on Q1212, Vol 42, No 3, 2006: Equality occurs in (3) when x0 = ±1,
and in (2) when

a

x3
0

=
b

x2
0

=
c

x0

,

implying x0 = 1 and a = b = c or x0 = −1 and a = −b = c. So there are four
sets of values of x0, a, b and c such that equality occurs in (1): x0 = 1 and (a, b, c) =
±(2/3, 2/3, 2/3) or x0 = −1 and (a, b, c) = ±(2/3,−2/3, 2/3). Among these only (x0, a, b, c) =
(1,−2/3,−2/3,−2/3) and (x0, a, b, c) = (−1, 2/3,−2/3, 2/3) satisfy the given equation.
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