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History of Mathematics: More on Ptolemy’s Theorem
Michael A B Deakin1

I could kick myself! I have to begin this column by confessing to a stupid mistake.
Here is what happened. I was surfing the net when I came upon a website that held
great interest for me. What I should have done, of course, was to bookmark the page
or at least take a note of the URL. But thinking that I could readily retrace my steps at
some future date, I did neither, with the result that when I came to look for it again, I
found myself lost completely in cyberspace. So now I can only give you the gist of the
page that caught my attention.

The website seemed to be a blog from a US professor of Engineering. As I have
lost his name, I shall simply call him Professor X. He raised several interesting ques-
tions in the context of a discussion of a class he had conducted. He had introduced
the topic of Ptolemy’s theorem, which was the subject of my last column, and found
that none of his students had ever encountered it. Given that Euclidean geometry has
been almost completely banished from school syllabuses, this is perhaps not entirely
surprising. But he did find that almost all of the students in his class were able to test
the result experimentally by, in one way or another, programming a computer to check
its validity.

In order to make this article self-contained, I remind readers of what the theorem
says. Look at Figure 1.
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Figure 1

This shows a convex quadrilateral ABCD whose vertices all lie on a circle with
centre O. For ease of description, we set up the following notation:

|AB| = a

|BC| = b |AC| = x

|CD| = c |BD| = y

|DA| = d.

1Michael Deakin is an Honorary Research Fellow in Mathematics at Monash University.
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Ptolemy’s Theorem now says that ac+ bd = xy.

I gave a proof of this result in my previous column, and will later give others in this
one, but before I do so, let us return to Professor X’s blog. It seems that each student
generated a random concyclic quadrilateral (i.e. one fitting exactly into a circle as in
Figure 1) and then had the computer calculate ac + bd − xy for it. In every case, the
result (to 12 significant figures) was zero.

Professor X was concerned to raise two matters: the first was to comment on the
changing nature of Mathematics – the replacement of booklearning with an experi-
mental approach; the second was a query – how much faith can we put in such an
experimental result? Answering his own question, Professor X seemed to conclude
that the experiment was as conclusive as the formal demonstration to be found in ge-
ometry texts. He asked howmany such results would be needed to establish the result
conclusively, and tentatively suggested the answer three. This is what led to my own
interest in the problem.

My first approach was to use polar coordinates. Without any loss of generality, we
may take the radius of the circle to be 1. Now establish some further notation that will
also be useful later. Set:

〈AOB = α 〈BOC = β 〈COD = γ 〈DOA = δ,

where α+ β+ γ+ δ = 2π.We now need three angles to be chosen at random: α is to be
taken as a random number in the interval 0 < α < 2π; α+ β is to be taken as a random
number in the interval α < α + β < 2π;α + β + γ is to be taken as a random number
in the interval α + β < α + β + γ < 2π. [Note the use of radian measure; it is a good
habit to adopt.] Thus the polar representations of the vertices may be taken (without
any loss of generality) as:

A = (1, 0) B = (1, α) C = (1, α + β) D = (1, α + β + γ),

or, in the more familiar Cartesian co-ordinates,

A = (1, 0) B = (cosα, sinα) C = (cos(α + β), sin(α + β))

D = (cos(α + β + γ), sin(α + β + γ)).

Listed below are the results of three runs in Excel. Each block of figures represents a
test run. All angles I have labelled phi. Thus in the first block the angular coordinates
are respectively 0, α, α + β and α + β + γ and similarly for each of the other blocks.
The second and third columns in each block provide the Cartesian coordinates of the
pointsA,B,C,D respectively. From these the lengths of a, b, c, d, x and y are calculated.
Finally, for each set, the value of ac + bd − xy is derived and the result is (as it should
be) zero in every case. The result is valid to six decimal places in all cases, although
this accuracy could have readily been extended.
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phi sin(phi) cos(phi) lengths products

0 0 1 A 1.65223 AB,a 2.24844214 ac
1.944356 0.931034 -0.3649 B 1.005672 BC,b 1.56825355 bd
2.998109 0.142992 -0.9897 C 1.360853 CD,c 3.81669569 xy
4.494798 -0.97642 -0.2159 D 1.559409 DA,d

1.994855 AC,x
1.913269 BD,y 0 ac+bd-xy

0 0 1 A 1.843702 AB,a 2.20132699 ac
2.345659 0.714517 -0.6996 B 0.462958 BC,b 0.82325328 bd
2.812854 0.322849 -0.9465 C 1.193971 CD,c 3.02458027 xy
4.092331 -0.81384 -0.5811 D 1.778248 DA,d

1.973043 AC,x
1.532952 BD,y 0 ac+bd-xy

0 0 1 A 1.230839 AB,a 0.1309039 ac
1.325874 0.970156 0.24248 B 1.446191 BC,b 2.88927164 bd
2.942421 0.197857 -0.9802 C 0.106351 CD,c 3.02017554 xy
3.048822 0.092638 -0.9957 D 1.997849 DA,d

1.990091 AC,x
1.517607 BD,y 0 ac+bd-xy

This provides powerful evidence that the theorem holds good, and once it would
have provided the spur towards the production of a purely formal proof. However, I
take the thrust of Professor’s question to be, ‘With evidence like this, do we really need
a formal proof at all?’

This is the matter I wish to discuss further.
My first approach to the question was to consider the possible ways in which such

an experiment might be set up. Professor X gave little detail on this matter, but I soon
realized that my approach was by no means the only one available.

Here is another. From the triangle OAB, we have a = 2 sin
α

2
and similarly for the

other sides of the quadrilateral. Wemay likewise express x and y in terms of the angles.
The full table is (with δ = 2π − α− β − γ):

a = 2 sin
α

2
b = 2 sin

β

2
c = 2 sin

γ

2
d = 2 sin

δ

2

x = 2 sin
α + β

2
y = 2 sin

β + γ

2
.

To prove Ptolemy’s theorem, we therefore need to show (after clearing a common fac-
tor of 4) that

sin
α

2
sin

γ

2
+ sin

β

2
sin

δ

2
= sin

α + β

2
sin

β + γ

2
(1)

where
α + β + γ + δ = 2π. (2)
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This is the sort of thing that would have been set as a trigonometry exercise in my
high school days (although it would have been marked with an asterisk, to denote a
problem harder than the usual). Here is how a proof could go:

sin
α

2
sin

γ

2
+ sin

β

2
sin

δ

2

=
1

2

(

cos
α− γ

2
− cos

α + γ

2

)

+
1

2

(

cos
β − δ

2
− cos

β + δ

2

)

=
1

2

(

cos
α− γ

2
+ cos

β − δ

2

)

− 1

2

(

cos
α + γ

2
+ cos

β + δ

2

)

= cos
α + β − γ − δ

4
cos

α− β − γ + δ

4

+ cos
α + β + γ + δ

4
cos

α− β + γ − δ

4

= cos
α + β − γ − δ

4
cos

α− β − γ − δ

4
by Equation (2)]

= cos
2π − 2γ − 2δ

4
cos

2π − 2β − 2γ

4

= sin
γ + δ

2
sin

β + γ

2

= sin
α + β

2
sin

β + γ

2
[again by Equation (2)].

This provides a proof of Ptolemy’s theorem (and incidentally reinforces my re-
marks in my previous column about the construction of chord tables as a precursor
to Trigonometry), but it doesn’t address Professor X’s question. However, the analysis
just given may be modified to do just that. Consider

sin
α

2
sin

γ

2
+ sin

β

2
sin

δ

2
− sin

α + β

2
sin

β + γ

2
= E (say)

and expand this expression in terms of α. Keep β and γ fixed, but remember that δ is
given by δ = 2π − α− β − γ. We then have

E = sin
α

2
sin

γ

2
+ sin

β

2
sin

2π − α− β − γ

2
− sin

α + β

2
sin

β + γ

2
.
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Now continue with the expansion of E in terms of a = 2 sin α

2
. We find

E = sin
α

2
sin

γ

2
+ sin

β

2
sin

(

π − α + β + γ

2

)

− sin
β + γ

2

(

sin
α

2
cos

β

2
+ cos

α

2
sin

β

2

)

= sin
α

2

(

sin
γ

2
− sin

βγ

2
cos

β

2

)

+ sin
β

2
sin

(

α + β + γ

2

)

− cos
α

2
sin

β

2
sin

β + γ

2

= sin
α

2

(

sin
γ

2
− sin

β + γ

2
cos

β

2
+ sin

β

2
cos

β + γ

2

)

+cos
α

2

(

sin
β

2
sin

β + γ

2
− sin

β

2
sin

β + γ

2

)

= sin
α

2

(

sin
γ

2
− sin

β + γ

2
cos

β

2
+ sin

β

2
cos

β + γ

2

)

.

At this point, we can work on the coefficient of sin
α

2
.

sin
β

2
cos

β + γ

2
− sin

β + γ

2
cos

β

2
+ sin

γ

2
= sin

−γ

2
+ sin

γ

2
= 0.

Thus we have once again proved that E = 0, and in truth this proof is merely a recast-
ing of the previous one.

However, there is another way to proceed. Just beyond the half-way point in the
above derivation, we reached a point where we had

E = sin
α

2
F1(β, γ) + cos

α

2
F2(β, γ),

where F1(β, γ) and F2(β, γ) were complicated expressions involving β and γ. (Both
ultimately turned out to be zero, but suppose we got lazy and wanted to avoid the

work involved in proving this.) Recall that sin α

2
= α

2
so that cos α

2
=

√

1− a2

4
. The aim

is to show that E = 0. That is to say, we want to establish the result

aF1(β, γ) = −
√

1− a2

4
F2(β, γ),

which we may write as

4
(

(F1(β, γ)
2 + (F2(β, γ)

2
)

a2 − 4 (F2(β, γ))
2 = 0.

The left-hand side of this equation is a quadratic in a, and so is the right, albeit a
very simple one!

Now, let me introduce a very powerful theorem. It is not as well-known as it de-
serves, but it can be most useful. It states that:
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If PN(x) and Qn(x) are two polynomials of degree n in x, and if Pn(x) =
Qn(x) for n + 1 different values of x, then Pn(x) and Qn(x) are identically
equal.

This provides the method of proof known as ‘pseudo-induction’. We seek to ap-
ply it here, and because the two polynomials in our case are quadratics, we will have
proved the result for all cases if we can find three cases for which it holds. Because
every value of a corresponds to a value of α and vice versa, it will suffice, in order to
prove Equation (1) to show that it holds for three different values of α. So it would
seem that Professor X had a certain serendipity on his side!

Furthermore, if we can verify Equation (1) for three different values of α, then this
constitutes a complete and rigorous proof. What Professor X was proposing is what
is called a heuristic. The Mathworld website gives as one definition of this word ‘con-
vincing without being rigorous’. Certainly this meaning is most apt in this context.
However, to complete the proof, we do need to demonstrate three values of α that lead
to cases in which Equation (1) holds.

An obvious candidate is α = 0, i.e. a = 0. I leave the details to the reader, but
remind that reader that in this instance β + γ + δ = 2π. Exactly the same argument
applies in the case d = 0, which corresponds to the case α = 2π − β − γ. What is
probably the simplest choice for the third value is α = β+γ. This results in a somewhat
simpler version of an earlier analysis (the reader may fill in the details) . So here we
have another proof of Ptolemy’s theorem.

I close with a further observation and a reminiscence.
The observation provides a further heuristic, but one which means that we need

only check one instance in order to provide a convincing (albeit incompletely rigorous)
demonstration of the theorem. In order to do this, we relax an assumption I made
earlier. I took the radius of the enclosing circle to be 1; now let it be r. The result of this
change is merely to alter the scale of the underlying diagram (Figure 1). All the lengths
will now be exactly r times as long as they were in the earlier case.

Now consider xy. This will be given by some formula F involving a, b, c, d.

xy = F (a, b, c, d).

Scaling the diagram by a factor of r results in a scaling of the product xy by a factor
of r2, which suggests that the required formula involves products of lengths: some or
all of the products a2, b2, c2, d2, ab, ac, ad, bc, bd, cd. Moreover the formula will need to
exhibit the geometric symmetries inherent in the problem:

• Interchange of a and c leaves the formula unchanged, as this merely rearranges
the way in which the diagram is labeled

• Interchange of b and d leaves the formula unchanged, for the same reason

• Interchange of the pair (a, c) with the pair (b, d) leaves the formula unchanged,
again for a similar reason.
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The first two considerations suggest that the formula we need involves the products in
the combinations ac, a2 + c2, bd, b2 + d2, all of which display the required symmetries.
The third requirement suggests that it involves them either as ac + bd, or else as a2 +
b2+c2+d2.However, this latter possibility would leave the formula unchanged if a and
b were interchanged, which is clearly wrong because this interchange does materially
alter the diagram. So we are led to the formula

xy = F (ac+ bd),

indeed to the formula
xy = K(ac+ bd),

where K is a constant. The reason for this is that such a right-hand side scales as r2

exactly as required.
We can now determine the value of K by simply considering one special case. A

good one to consider is that of a square ABCD, for which

a = b = c = d; x = y = d
√
2.

From this case, we see that K = 1, and Ptolemy’s theorem results.
This argument is not a rigorous proof, although it may well be possible to construct

one along these lines by extending the ideas it entails. It is however a powerful heuris-
tic. (I will say more about such arguments in my next column.)

The reminiscence I use to close this article does not involve Ptolemy’s theorem, but
speaks nevertheless to the power of heuristic arguments. About 20 years ago, I had a
letter and a bulky manuscript arrive on my desk. The author was a man, Mr Y, I will
call him, who lived in a third world country, and would seem to have been an amateur
mathematician.

He had developed a new method of finding approximate zeroes of polynomials.
There are several such methods already available, so that there is no great need for
another, especially as his approach only applied to a very limited class of problems.
Nor were these the only difficulties. His ‘proof’ that the method worked consisted
of the production of numbers of enormous algebraic formulae, all true, but he then
presumed that a pattern that he discerned in their appearance would persist whenever
they were generalized. This was by no means obvious.

I wrote to Mr Y pointing out, as nicely as I could, that these difficulties existed.
However, I was greatly impressed that his formulae produced values that were accu-
rate to 10 decimal places! I checked the examples he provided using the computer
algebra package MAPLE, and also by means of a powerful hand–held calculator. Both
these confirmed the results Mr Y claimed. I thought: ‘There must be something in this,
even though the supporting argumentation is inadequate’. For a while, I tried to see
what this something was, but got nowhere, and so directed my attentions elsewhere.

Then just last year, when I was looking for something completely different, my eye
lighted on a passage in an old textbook of Calculus. A theoremwas proved there which
provided exactly what Mr Y needed to prove his case. I wrote to Mr Y, but my letter
seemed to fall into a black hole. It would have been nice to have him see the validation
of his claim, but alas this seems not to have happened.
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