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UNSW School Mathematics Competition 2007

Problems and Solutions

Junior Division

Problem 1. You are given nine square tiles, with sides of lengths 1, 4, 7, 8, 9, 10, 14,
15 and 18 units, respectively. They can be used to tile a rectangle without gaps or
overlaps.

Find the lengths of the sides of the rectangle, and show how to arrange the tiles.

Solution: The rectangle is 33 × 32, and one arrangement is shown below.

The area of the rectangle is equal to the sum of the areas of the squares, which is
1056 = 25×3×11; one dimension is at least 33, and the other is at least 29, and the only
factorisation of 1056 which allows this is 33× 32.

Problem 2. Find all sets of three equally–spaced integers (positive or negative) whose
product is 3240.

Solution: There are eight such sets, namely {12, 15, 18}, {6, 18, 30}, {3, 24, 45}, {−36,−3, 30},
{−30,−6, 18}, {−30,−9, 12}, {−36,−15, 6} and {−81,−40, 1}.

Let the numbers be x − y, x and x + y with y > 0. It is not hard to show (see the
solution of Senior Question 1) that if x > 0, then x is a divisor of 3240 with 15 ≤ x ≤ 40,
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y2 = x2 − 3240

x
, and we obtain the table

x 15 18 20 24 27 30 36 40
x2 − 3240

x
9 144 238 441 609 792 1206 1518

y 3 12 − 21 − − − −
x− y 12 6 3
x 15 18 24

x+ y 18 30 45

while if x < 0, x = −z, then z is a divisor of 3240 with z ≤ 40 and y2 = z2 +
3240

z
, and

we obtain the table

z 1 2 3 4 5 6 8 9 10
z2 + 3240

z
3241 1624 1089 826 673 576 469 441 424

y − − 33 − − 24 − 21 −
x− y −36 −30 −30
x −3 −6 −9

x+ y 30 18 12

z 12 15 18 20 24 27 30 36 40
z2 + 3240

z
414 441 504 562 711 849 1008 1386 1681

y − 21 − − − − − − 41
x− y −36 −81
x −15 −40

x+ y 6 1

Problem 3. A rectangular room is paved with square tiles all the same size.
Show how you can draw a right-angled triangle on the floor with the following

properties:
The vertices of the triangle are at corners of tiles, the hypotenuse lies along the edge

of the room, and the ratio of the lengths of the shorter sides is 2 : 3.
Can it be done if the ratio of the lengths of the shorter sides ism : n?

Solution: Suppose two sides of the room lie along the positive x and y axes, and that
the square tiles have side length 1 unit. Join the points O(0, 0) and P (0,m2 + n2) to the
point Q(mn,m2). Then OQP is a right–angled triangle and OQ : PQ = m : n.

Slope of OQ = m
2
−0

mn−0
= m

n
, slope of PQ = m

2+n
2
−m

2

0−mn
= − n

m
,

length of OQ =
√
m2n2 +m4 = m

√
m2 + n2,

length of PQ =
√
m2n2 + n4 = n

√
m2 + n2.

Problem 4. In a regular hexagon, how many triangles are there with their vertices at
vertices of the hexagon?

Of these, how many have their centroid (the point of concurrency of the medians)
on a diagonal (a line joining vertices) of the hexagon?

2



Solution: There are
(

6

3

)

= 20 triangles with their vertices at vertices of the hexagon,
and all of them have their centroids on a diagonal.

There are twelve triangles (two standing on each edge of the hexagon) with two
vertices at adjacent vertices of the hexagon, and their third vertex at a vertex of the
hexagon not adjacent to either of the other two vertices of the triangle; there are six
triangles (one at each corner of the hexagon) with all three vertices at neighbouring
vertices of the hexagon; and there are two triangles with their vertices at non–adjacent
vertices of the hexagon.

If the vertices are labelled A, B, C, D, E, F , then the triangles are ACF , ADF ,
BDA, BEA, CEB, CFB, DFC, DAC, EAD, EBD, EBF , ECF , ABF , BCA, CDB,
DEC, EFD, FAE, ACE and BDF . △ABF has its centroid on AD, △ACF has its
centroid on BE, and △ACE has its centroid on BE, AD and CF .

Problem 5. The ∗–product of the integers a and b is defined by

a ∗ b = ab+ a+ b = b ∗ a.

(i) Show that the integer n has the ∗–factorisation n = 0 ∗ n.

(ii) Show that the integer n also has the ∗–factorisation n = (−2)∗m for some integer
m by finding suitablem.

(iii) Find all ∗–factorisations of 18 and of 19.

(iv) Find all integers n that have no ∗–factorisations other than those in which one of
the ∗–factors is 0 or −2.

Solution:

(i) 0 ∗ n = 0n+ 0 + n = n.

(ii) (−2) ∗ m = −2m − 2 + m = −m − 2 = n yields m = −n − 2. That is, (−2) ∗
(−n− 2) = n.

(ii) 18 = 0 ∗ 18 = (−2) ∗ (−20).

19 = 0 ∗ 19 = 1 ∗ 9 = 3 ∗ 4 = (−2) ∗ (−21) = (−3) ∗ (−11) = (−5) ∗ (−6).

(iv) a ∗ b = n is equivalent to (a + 1)(b + 1) = n + 1. This has only the two ‘trivial’
solutions if n is positive and n + 1 is prime or if n is negative and n + 1 is the
negative of a prime.

Problem 6. At the inaugural meeting of a newly formed society, the following fact
is observed. If A, B and C are any three members, and if A and B know each other
and B and C know each other, then C knows no member other than B. Show that
the members can be separated into two rooms so that no two people in the same room
know each other.

Solution:
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There are several categories of people: singletons, pairs and star–like clusters.
Singletons can go in either room.
Pairs, who know one another but no–one else, can be separated into the two rooms.
Those who know two or more other people and are the centres of star–like clusters

can be put in either room, and the people they know can be put in the other.
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Senior Division

Problem 1. Find all sets of three equally-spaced integers (positive or negative) whose
product is 2160.

Solution: There are four such sets, namely {6, 15, 24}, {5, 16, 27}, {−30,−3, 24} and
{−30,−12, 6}.

Let the numbers be x− y, x and x+ y with y > 0. Then

x(x2 − y2) = 2160.

So x is a divisor of 2160, and

y2 = x2 − 2160

x
.

If x > 0, we require

x2 − 2160

x
> 0.

Also y2 ≤ (x− 1)2, or,

x2 − 2160

x
≤ (x− 1)2,

2160

x
≥ 2x− 1.

So 15 ≤ x ≤ 30.

So we find
x 15 16 18 20 24 27 30

x2 − 2160

x
81 121 204 392 486 649 828

y 9 11 − − − − −
x− y 6 5
x 15 16

x+ y 24 27

If x < 0, put x = −z. Then

y2 = z2 +
2160

z
.

Then z is a divisor of 2160 and y2 ≥ (z + 1)2, or,

2160

z
≥ 2z + 1.

So z ≤ 30.
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So we find

z 1 2 3 4 5 6 8 9 10
z2 + 2160

z
2161 1084 729 556 457 396 334 321 316

y − − 27 − − − − − −
x− y −30
x −3

x+ y 24

z 12 15 16 18 20 24 27 30
z2 + 2160

z
324 369 391 444 508 666 809 972

y 18 − − − − − − −
x− y −30
x −12

x+ y 6

Problem 2. Four football teams A, B, C and D play each other in a round robin tour-
nament. Each pair of teams plays exactly one match, and the winners score 2 points,
the losers 0. If the match is a draw, each team scores 1 point.

John switches on the radio just in time to hear the announcer say ‘Team D came
fourth. So no two teams scored the same number of points, and the only draw was in
the game A versus B.’

John was disappointed because his favourite team was not even mentioned.
Find the placing of his favourite team, and the number of points they scored.

Solution: John’s favourite team, C, came second with 4 points.
Altogether there are 12 points to be won and no team can score more than 6. A’s

and B’s final scores are odd and at most 5, and are different, so are {5, 3}, {5, 1} or
{3, 1}. We will assume for the moment that A does better than B.

D’s final score is less than all the others. So if B’s score is 1, D’s is 0. But then C’s
score is 6 or 8. Obviously 8 is impossible, but so is 6, since that implies C beat A, while
A’s score of 5 implies A beat C. So the only possibility is that A scores 5, B scores 3, C
scores 4 and D scores 0. (Or switch A and B.)

Problem 3. Prove that if x and n are positive integers then (x−1)n+2+x2n+1 is divisible
by x2 − x+ 1.

Solution: If x = 1, the result is obvious. If x > 1 then x2 − x + 1 > 1, and we can
calculate modulo x2 − x+ 1.

It is easy to show that as n increases, xn cycles with period 6 through x, x −
1, −1, −x, −x + 1, 1 , so x2n+1 (starting with n = 1) cycles with period 3 through
−1, −x+ 1, x, while (x− 1)n+2 (also starting with n = 1) cycles with period 3 through
1, x− 1, −x.

So (x− 1)n+2 + x2n+1 ≡ 0 (mod x2 − x+ 1) for all n ≥ 1.
(The result is also true for n = 0.)
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Problem 4. The sum of three numbers in a geometric progression is 21, and the sum of
their squares is 189.

Find the numbers.
Do the same if the sum is s and the sum of squares is t.

Solution: (i) The numbers are {3, 6, 12}.
Suppose the numbers are a, ar, ar2. Then

a(1 + r + r2) = 21,
a2(1 + r2 + r4) = 189.

It follows that
a2(1 + 2r + 3r2 + 2r3 + r4) = 441

and 441(1 + r2 + r4) = 189(1 + 2r + 3r2 + 2r3 + r4),

or, on simplification,
2r4 − 3r3 − r2 − 3r + 2 = 0,

(r2 + r + 1)(2r2 − 5r + 2) = 0,

r = 2 or
1

2
.

The result now follows easily.
(ii) In the case

a(1 + r + r2) = s,

a2(1 + r2 + r4) = t,

we find that the three numbers are

s

1 + r + r2
,

rs

1 + r + r2
,

r2s

1 + r + r2
,

where r is either root of

(s2 − t)r2 − (s2 + t)r + (s2 − t) = 0,

unless s = t = 0, in which case either all three numbers are 0 or are a, aω and aω2,
where ω 6= 1 is a cube root of unity, or s2 = t 6= 0, in which case r = 0, and the numbers
are s, 0 and 0.
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Problem 5.

(a) Given an isosceles trapezium, with equal sides of length a, parallel sides of lengths
b and c, and diagonal of length d, prove that

d2 = a2 + bc.

(b) Hence, or otherwise, find the (shortest) distance across the surface of the Earth
from London (52oN, 0oE) to Sydney (35oS, 152oE), assuming the Earth is a sphere
of circumference 40000 Km.

Solution:

(a) Draw in one diagonal. In one triangle we find

d2 = a2 + b2 − 2ab cosα,

while in the other
d2 = a2 + c2 + 2ac cosα.

It follows that
cd2 + bd2 = a2b+ a2c+ b2c+ bc2,

or (b+ c)d2 = (b+ c)(a2 + bc).

(b) According to the data, the distance from London to Sydney is 17100 Km to three
significant digits. (However, since the latitude of Sydney is actually just less than
34oS, a closer answer is 17000 Km.)

Let L be London, S be Sydney, let P be the point in the Pacific with coordinates
(52oN, 152oE), A be the point in the Atlantic with coordinates (35oS, 0oE), and let
R be the radius of the Earth inKm.

Then L and P are 152o apart on a circle of radius r = R cos 52o,

and b = 2r sin 76o = 2R cos 52o sin 76o.

Similarly,
c = 2R cos 35o sin 76o

and a = 2R sin 43.5o.

Thus
d = 2R

√
sin2 43.5o + cos 35o cos 52o sin2 76o

= 2R sin θ/2

where θ is the angle subtended by LS at the centre of the Earth.

The distance of London from Sydney inKm is

distance = Rθ

= 2R sin−1
√
sin2 43.5o + cos 35o cos 52o sin2 76o

= 17100

to three significant figures.
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Problem 6. Let S be the set of all real numbers of the form

m+ n√
m2 + n2

wherem and n are positive integers.
Prove that for every pair of numbers x and y in S there is a number z in S between

x and y.
Solution: Suppose x, y ∈ S. Then we can write

x =
m+ n√
m2 + n2

, y =
p+ q

√

p2 + q2
,

and we can assume m ≤ n, p ≤ q.
Define θ and φ, 0 < θ, φ ≤ π

4
, by

sin θ =
m√

m2 + n2
, sinφ =

p
√

p2 + q2
.

Suppose x < y. Then
sin θ + cos θ < sinφ+ cosφ,

so, since the function sin x+ cos x is increasing on (0, π
4
), we have θ < φ. It follows that

tan θ < tanφ. That is,
m

n
<

p

q
.

Choose a rational between
m

n
and

p

q
, say

m

n
<

m+ p

n+ q
<

p

q
,

define ξ ∈ (0, π
4
) by

tan ξ =
m+ p

n+ q

and z by

z = sin ξ + cos ξ =
m+ p+ n+ q

√

(m+ p)2 + (n+ q)2
.

Then z ∈ S and
tan θ < tan ξ < tanφ,

θ < ξ < φ,

sin θ + cos θ < sin ξ + cos ξ < sinφ+ cosφ,

x < z < y.
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