Parabola Volume 43, Issue 2 (2007)

Solutions to Problems 1231–1240

Q1231 Given $a > 0$, prove that

$$
\underbrace{\sqrt{a+\sqrt{a+\cdots+\sqrt{a}}}}_{n \text{ times}} < \frac{1+\sqrt{4a+1}}{2}.
$$

ANS: Let

$$
x_1 = \sqrt{a}
$$
, $x_2 = \sqrt{a + \sqrt{a}}$, ..., $x_n = \underbrace{\sqrt{a + \sqrt{a + \cdots + \sqrt{a}}}}_{n \text{ times}}$.

Then $x_n > x_{n-1}$. Also $x_n^2 = a + x_{n-1}$. So $x_n^2 < a + x_n$ or $x_n^2 - x_n - a < 0$. This implies that $x_n \in (s_1, s_2)$ where s_1 and s_2 are two solutions of the quadratic equation $s^2 - s - a = 0$. These solutions are

$$
s_1 = \frac{1 - \sqrt{1 + 4a}}{2}
$$
 and $s_2 = \frac{1 + \sqrt{1 + 4a}}{2}$.

This proves the required inequality.

Q1232 Let *a* and *c* be two distinct real numbers and *b* be their arithmetic average (i.e. $b = (a + c)/2$). Find the condition on a and c so that $\sin^2 a$ and $\sin^2 c$ are distinct, and that $\sin^2 b$ is the arithmetic average of $\sin^2 a$ and $\sin^2 c$.

ANS: Note that

$$
\sin^2 b = \frac{\sin^2 a + \sin^2 c}{2} \iff \sin^2 b - \sin^2 a = \sin^2 c - \sin^2 b
$$

$$
\iff (\sin b + \sin a)(\sin b - \sin a)
$$

$$
= (\sin c + \sin b)(\sin c - \sin b).
$$
 (1)

Using the additional formulae in trigonometry we deduce that [\(1\)](#page-0-0) is equivalent to

$$
4\sin\frac{a+b}{2}\cos\frac{b-a}{2}\cos\frac{a+b}{2}\sin\frac{b-a}{2}
$$

$$
= 4\sin\frac{b+c}{2}\cos\frac{c-b}{2}\cos\frac{b+c}{2}\sin\frac{c-b}{2}
$$

or, with the help of the double angle formula for sine,

$$
\sin(a+b)\sin(b-a) = \sin(b+c)\sin(c-b).
$$

Since $b = (a + c)/2$ we have $b - a = c - b$; thus the above identity is equivalent to

$$
\sin(b - a)[\sin(a + b) - \sin(b + c)] = 0.
$$

If $sin(b - a) = 0$ then $b - a = k\pi$ for $k = 0, \pm 1, \pm 2, \ldots$ But in this case $b = a + k\pi$ and $c = b + k\pi$, so that $\sin^2 a = \sin^2 b = \sin^2 c$. In order that these are distinct numbers a, b and c must satisfy $sin(a + b) = sin(b + c)$, implying

 $a + b = b + c + 2k\pi$ or $a + b = \pi - b - c + 2k\pi$, $k = 0, \pm 1, \pm 2, \ldots$.

The first condition will result in $\sin^2 a = \sin^2 b = \sin^2 c$, so the required condition on a and c is $a + b = \pi - b - c + 2k\pi$, or $a + c = (2k + 1)\pi/2$, $k = 0, \pm 1, \ldots$

Q1233 Prove that for any odd interger $n \geq 3$ and any $a \neq 0$ there holds

$$
\left(1+a+\frac{a^2}{2!}+\frac{a^3}{3!}+\cdots+\frac{a^n}{n!}\right)\left(1-a+\frac{a^2}{2!}-\frac{a^3}{3!}+\cdots-\frac{a^n}{n!}\right)<1.
$$

ANS: Let

$$
f(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}
$$
 and $g(x) = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots - \frac{x^n}{n!}$.

It is easy to see that

$$
f'(x) = f(x) - \frac{x^n}{n!}
$$
 and $g'(x) = -g(x) - \frac{x^n}{n!}$

.

If $h(x) = f(x)g(x)$ then

$$
h'(x) = \left(f(x) - \frac{x^n}{n!}\right)g(x) + f(x)\left(-g(x) - \frac{x^n}{n!}\right)
$$

= $-2\frac{x^n}{n!}\left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{n-1}}{(n-1)!}\right).$

Since n is odd we have

$$
1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{n-1}}{(n-1)!} > 0 \quad \text{for all } x,
$$

so that $h'(x) > 0$ for all $x < 0$, and $h'(x) < 0$ for all $x > 0$. This implies $h(x) < h(0) = 1$ for all $x \neq 0$, proving the required inequality.

Q1234 (suggested by J. Guest, Victoria; edited)

Is the following statement true? "No prime number of type $10s + 1$ is a divisor of any number of the type $5^n + 1$, where s and n are positive integers." Give reason for your answer.

ANS: The statement is not true. In fact, take $p = 521$ which is easily seen to be prime and is of the type $10s + 1$ with s being 52. On the other hand, taking $n = 5$ we obtain $5^5 + 1 = 3126 = 6 \times 521.$

Q1235 (suggested by J. Guest, Victoria) As Jack and Tony went for a stroll they spotted a nice fruit shop. Jack decided to buy 7 bananas, 3 oranges and 5 plums, while Tony bought 5 bananas, 7 oranges and 3 plums. Jack spent \$3.49 for his purchase and Tony \$3.89. You are given that the bananas cost more than 20 cents each. Find the price of all three types of fruit.

ANS: Let the price of each banana be x cents, each orange be y cents, and each plum be z cents. Then we deduce

$$
7x + 3y + 5z = 349\tag{1}
$$

$$
5x + 7y + 3z = 389.
$$
 (2)

Let us now eliminate z between [\(1\)](#page-0-0) and [\(2\)](#page-2-0). This provides

$$
2x + 13y = 449.
$$

As the greatest common divisor of 2 and 13 is 1, we must expect a valid solution. Next divide by the smaller coefficient, i.e. 2, to arrive at

$$
x + 6y = \frac{449 - y}{2}.\tag{3}
$$

The left-hand side of [\(3\)](#page-2-1) being a positive integer, $t = (449 - y)/2$ must be an integer. It follows that

 $y = 449 - 2t$ for some integer t.

This, together with [\(3\)](#page-2-1) and [\(1\)](#page-0-0), yields

$$
x = 13t - 2694 \quad \text{and} \quad z = 3572 - 17t.
$$

Since x, y and z are positive integers, t must satisfy $207 < t < 210$, i.e. $t = 208$ or $t = 209$. If $t = 208$, the bananas cost 10 cents each, which we cannot accept by data. For $t = 209$ we arrive at the only permissible solution

$$
x = 23
$$
 cents, $y = 33$ cents and $z = 19$ cents.

Q1236 Calculate the sum

$$
6 + 66 + 666 + \dots + \underbrace{66 \cdots 66}_{n \ 6's}, \quad n \ge 1.
$$

ANS: Let S be the sum. Then

 \sim

$$
\frac{3}{2}S = 9 + 99 + 999 + \dots + \underbrace{99 \dots 99}_{n^9s}
$$
\n
$$
= (10 - 1) + (10^2 - 1) + (10^3 - 1) + \dots + (10^n - 1)
$$
\n
$$
= (10 + 10^2 + \dots + 10^n) - \underbrace{(1 + 1 + \dots + 1)}_{n \text{ times}}
$$
\n
$$
= \frac{10(10^n - 1)}{10 - 1} - n.
$$

Therefore,

$$
S = \frac{2}{3} \left(\frac{10}{9} (10^{n} - 1) - n \right).
$$

Q1237 Prove that the numbers 49, 4489, 44489, ..., obtained by inserting 48 in the middle of the preceding number are all perfect squares.

ANS: The nth term of the sequence is

$$
a_n = \underbrace{44 \cdots 44}_{n \text{ terms}} \underbrace{88 \cdots 88}_{n-1 \text{ terms}} 9
$$

=
$$
\left(4 \times 10^{2n-1} + 4 \times 10^{2n-2} + \cdots + 4 \times 10^n\right)
$$

+
$$
\left(8 \times 10^{n-1} + 8 \times 10^{n-2} + \cdots + 8 \times 10\right) + 8 + 1
$$

=
$$
4 \times 10^n (10^{n-1} + \cdots + 1) + 8(10^{n-1} + \cdots + 1) + 1.
$$

The formula for the sum of a geometric progression gives

$$
a_n = \frac{4}{9} \times 10^n (10^n - 1) + \frac{8}{9} (10^n - 1) + 1
$$

= $\frac{4}{9} \times 10^{2n} + \frac{4}{9} \times 10^n + \frac{1}{9}$
= $\left(\frac{2 \times 10^n + 1}{3}\right)^2$.

It remains to show that $(2 \times 10^n + 1)/3$ is an integer. This is easy to see because

$$
2 \times 10^n + 1 = 2 \underbrace{00 \cdots 00}_{n \text{ terms}} + 1 = 200 \cdots 01,
$$

which is divisible by 3.

Q1238 Let x, y and z be three positive numbers such that $x < y < z$. Prove that if $1/z$, 1/y and 1/x form an arithmetic progression then $z - x$, y, and $x - y + z$ are the lengths of the sides of a right-angled triangle.

ANS: First we note that $z - x > 0$ and $x - y + z > 0$. Since $1/z$, $1/y$ and $1/x$ form an arithmetic progression there holds

$$
\frac{1}{y} = \frac{1}{2} \left(\frac{1}{x} + \frac{1}{z} \right) = \frac{x+z}{2xz},
$$

implying $2xz = xy + yz$. Therefore,

$$
(x - y + z)^2 = x^2 + y^2 + z^2 - 2xy - 2yz + 2zx
$$

= $x^2 + 2xz + z^2 + y^2 - 2(xy + yz)$
= $x^2 + 2xz + z^2 + y^2 - 4xz$
= $x^2 - 2xz + z^2 + y^2$
= $(x - z)^2 + y^2$.

By the Pythagorean theorem, $z - x$, y, and $x - y + z$ are the lengths of the sides of a right-angled triangle.

Q1239 Find all real numbers x and y satisfying

$$
4^{\sin x} - 2^{1 + \sin x} \cos(xy) + 2^{|y|} = 0.
$$

ANS: The given equation can be rewritten as

$$
(2^{\sin x} - \cos(xy))^2 + (2^{|y|} - \cos^2(xy)) = 0.
$$
 (1)

Due to $\cos^2(xy) \leq 1 \leq 2^{|y|}$, there holds $2^{|y|} - \cos^2(xy) \geq 0$, and thus equation [\(1\)](#page-0-0) is equivalent to the system

$$
2^{\sin x} - \cos(xy) = 0
$$

\n
$$
2^{|y|} - \cos^2(xy) = 0
$$
\n(2)

But

$$
2^{|y|} - \cos^2(xy) = 0 \iff \left(2^{|y|} = 1 \quad \text{and} \quad \cos^2(xy) = 1\right) \iff y = 0.
$$

With this value of y ,

$$
2^{\sin x} - \cos(xy) = 0 \iff \sin x = 0 \iff x = k\pi, k = 0, \pm 1, \pm 2, \dots
$$

Therefore, all values of x and y satisfying the given equation are

$$
x = k\pi, k = 0, \pm 1, \pm 2, \dots
$$
, and $y = 0$.

Q1240 Prove that if $S(x) = ax^2 + bx + c$ is an integer when $x = 0$, $x = 1$ and $x = 2$, then $S(x)$ is an integer whenever x is an integer.

ANS: By substituting successively $x = 0$, $x = 1$ and $x = 2$ into $S(x)$ we deduce that c, $a + b + c$, and $4a + 2b + c$ are integers. As a consequence $a + b$ is an integer, which then implies that 2*a* is an integer (write $2a = (4a + 2b + c) - 2(a + b) - c$).

If 2*a* is an even integer, then *a* is an integer, and thus *b* is an integer, resulting in $S(x)$ being an integer for all integers x .

If 2*a* is an odd integer, then $a = k + 1/2$ for some integer k. Hence, due to $a + b = l$ being an integer, there holds

$$
S(x) = (k + \frac{1}{2})x^2 + (l - a)x + c
$$

= $(k + \frac{1}{2})x^2 + (l - k - \frac{1}{2})x + c$
= $kx^2 + (l - k)x + c + \frac{1}{2}x(x - 1)$.

Since either x or $x - 1$ is even, $x(x - 1)/2$ is an integer, and so is $S(x)$ for any integer x.