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Solutions to Problems 1231–1240

Q1231 Given a > 0, prove that√
a+

√
a+ · · ·+

√
a︸ ︷︷ ︸

n times

<
1 +
√
4a+ 1

2
.

ANS: Let

x1 =
√
a, x2 =

√
a+
√
a, . . . , xn =

√
a+

√
a+ · · ·+

√
a︸ ︷︷ ︸

n times

.

Then xn > xn−1. Also x2n = a+xn−1. So x2n < a+xn or x2n−xn−a < 0. This implies that
xn ∈ (s1, s2) where s1 and s2 are two solutions of the quadratic equation s2 − s− a = 0.
These solutions are

s1 =
1−
√
1 + 4a

2
and s2 =

1 +
√
1 + 4a

2
.

This proves the required inequality.

Q1232 Let a and c be two distinct real numbers and b be their arithmetic average (i.e.
b = (a + c)/2). Find the condition on a and c so that sin2 a and sin2 c are distinct, and
that sin2 b is the arithmetic average of sin2 a and sin2 c.

ANS: Note that

sin2 b =
sin2 a+ sin2 c

2
⇐⇒ sin2 b− sin2 a = sin2 c− sin2 b

⇐⇒ (sin b+ sin a)(sin b− sin a)

= (sin c+ sin b)(sin c− sin b). (1)

Using the additional formulae in trigonometry we deduce that (1) is equivalent to

4 sin
a+ b

2
cos

b− a
2

cos
a+ b

2
sin

b− a
2

= 4 sin
b+ c

2
cos

c− b
2

cos
b+ c

2
sin

c− b
2

or, with the help of the double angle formula for sine,

sin(a+ b) sin(b− a) = sin(b+ c) sin(c− b).
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Since b = (a+ c)/2 we have b− a = c− b; thus the above identity is equivalent to

sin(b− a)[sin(a+ b)− sin(b+ c)] = 0.

If sin(b − a) = 0 then b − a = kπ for k = 0,±1,±2, . . . But in this case b = a + kπ and
c = b + kπ, so that sin2 a = sin2 b = sin2 c. In order that these are distinct numbers a, b
and c must satisfy sin(a+ b) = sin(b+ c), implying

a+ b = b+ c+ 2kπ or a+ b = π − b− c+ 2kπ, k = 0,±1,±2, . . . .

The first condition will result in sin2 a = sin2 b = sin2 c, so the required condition on a
and c is a+ b = π − b− c+ 2kπ, or a+ c = (2k + 1)π/2, k = 0,±1, . . .

Q1233 Prove that for any odd interger n ≥ 3 and any a 6= 0 there holds(
1 + a+

a2

2!
+
a3

3!
+ · · ·+ an

n!

)(
1− a+ a2

2!
− a3

3!
+ · · · − an

n!

)
< 1.

ANS: Let

f(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
and g(x) = 1− x+ x2

2!
− x3

3!
+ · · · − xn

n!
.

It is easy to see that

f ′(x) = f(x)− xn

n!
and g′(x) = −g(x)− xn

n!
.

If h(x) = f(x)g(x) then

h′(x) =

(
f(x)− xn

n!

)
g(x) + f(x)

(
−g(x)− xn

n!

)
= −2x

n

n!

(
1 +

x2

2!
+
x4

4!
+ · · ·+ xn−1

(n− 1)!

)
.

Since n is odd we have

1 +
x2

2!
+
x4

4!
+ · · ·+ xn−1

(n− 1)!
> 0 for all x,

so that h′(x) > 0 for all x < 0, and h′(x) < 0 for all x > 0. This implies h(x) < h(0) = 1
for all x 6= 0, proving the required inequality.

Q1234 (suggested by J. Guest, Victoria; edited)

Is the following statement true? “No prime number of type 10s + 1 is a divisor of
any number of the type 5n + 1, where s and n are positive integers.” Give reason for
your answer.

ANS: The statement is not true. In fact, take p = 521 which is easily seen to be prime
and is of the type 10s + 1 with s being 52. On the other hand, taking n = 5 we obtain
55 + 1 = 3126 = 6× 521.
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Q1235 (suggested by J. Guest, Victoria) As Jack and Tony went for a stroll they spot-
ted a nice fruit shop. Jack decided to buy 7 bananas, 3 oranges and 5 plums, while
Tony bought 5 bananas, 7 oranges and 3 plums. Jack spent $3.49 for his purchase and
Tony $3.89. You are given that the bananas cost more than 20 cents each. Find the price
of all three types of fruit.

ANS: Let the price of each banana be x cents, each orange be y cents, and each plum
be z cents. Then we deduce

7x+ 3y + 5z = 349 (1)
5x+ 7y + 3z = 389. (2)

Let us now eliminate z between (1) and (2). This provides

2x+ 13y = 449.

As the greatest common divisor of 2 and 13 is 1, we must expect a valid solution. Next
divide by the smaller coefficient, i.e. 2, to arrive at

x+ 6y =
449− y

2
. (3)

The left-hand side of (3) being a positive integer, t = (449− y)/2 must be an integer. It
follows that

y = 449− 2t for some integer t.

This, together with (3) and (1), yields

x = 13t− 2694 and z = 3572− 17t.

Since x, y and z are positive integers, t must satisfy 207 < t < 210, i.e. t = 208 or
t = 209. If t = 208, the bananas cost 10 cents each, which we cannot accept by data. For
t = 209 we arrive at the only permissible solution

x = 23 cents, y = 33 cents and z = 19 cents.

Q1236 Calculate the sum

6 + 66 + 666 + · · ·+ 66 · · · 66︸ ︷︷ ︸
n 6’s

, n ≥ 1.

ANS: Let S be the sum. Then
3

2
S = 9 + 99 + 999 + · · ·+ 99 · · · 99︸ ︷︷ ︸

n 9’s

= (10− 1) + (102 − 1) + (103 − 1) + · · ·+ (10n − 1)

= (10 + 102 + · · ·+ 10n)− (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n times

=
10(10n − 1)

10− 1
− n.

3



Therefore,

S =
2

3

(
10

9
(10n − 1)− n

)
.

Q1237 Prove that the numbers 49, 4489, 44489, . . . , obtained by inserting 48 in the
middle of the preceding number are all perfect squares.

ANS: The nth term of the sequence is

an = 44 · · · 44︸ ︷︷ ︸
n terms

88 · · · 88︸ ︷︷ ︸
n−1 terms

9

=
(
4× 102n−1 + 4× 102n−2 + · · ·+ 4× 10n

)
+
(
8× 10n−1 + 8× 10n−2 + · · ·+ 8× 10

)
+ 8 + 1

= 4× 10n(10n−1 + · · ·+ 1) + 8(10n−1 + · · ·+ 1) + 1.

The formula for the sum of a geometric progression gives

an =
4

9
× 10n(10n − 1) +

8

9
(10n − 1) + 1

=
4

9
× 102n +

4

9
× 10n +

1

9

=

(
2× 10n + 1

3

)2

.

It remains to show that (2× 10n + 1)/3 is an integer. This is easy to see because

2× 10n + 1 = 2 00 · · · 00︸ ︷︷ ︸
n terms

+ 1 = 200 · · · 01,

which is divisible by 3.

Q1238 Let x, y and z be three positive numbers such that x < y < z. Prove that if 1/z,
1/y and 1/x form an arithmetic progression then z − x, y, and x− y + z are the lengths
of the sides of a right-angled triangle.

ANS: First we note that z − x > 0 and x − y + z > 0. Since 1/z, 1/y and 1/x form an
arithmetic progression there holds

1

y
=

1

2

(
1

x
+

1

z

)
=
x+ z

2xz
,

implying 2xz = xy + yz. Therefore,

(x− y + z)2 = x2 + y2 + z2 − 2xy − 2yz + 2zx

= x2 + 2xz + z2 + y2 − 2(xy + yz)

= x2 + 2xz + z2 + y2 − 4xz

= x2 − 2xz + z2 + y2

= (x− z)2 + y2.

By the Pythagorean theorem, z − x, y, and x − y + z are the lengths of the sides of a
right-angled triangle.
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Q1239 Find all real numbers x and y satisfying

4sinx − 21+sinx cos(xy) + 2|y| = 0.

ANS: The given equation can be rewritten as(
2sinx − cos(xy)

)2
+
(
2|y| − cos2(xy)

)
= 0. (1)

Due to cos2(xy) ≤ 1 ≤ 2|y|, there holds 2|y| − cos2(xy) ≥ 0, and thus equation (1) is
equivalent to the system

2sinx − cos(xy) = 0

2|y| − cos2(xy) = 0
(2)

But
2|y| − cos2(xy) = 0 ⇐⇒

(
2|y| = 1 and cos2(xy) = 1

)
⇐⇒ y = 0.

With this value of y,

2sinx − cos(xy) = 0 ⇐⇒ sinx = 0 ⇐⇒ x = kπ, k = 0,±1,±2, . . . .

Therefore, all values of x and y satisfying the given equation are

x = kπ, k = 0,±1,±2, . . . , and y = 0.

Q1240 Prove that if S(x) = ax2 + bx + c is an integer when x = 0, x = 1 and x = 2,
then S(x) is an integer whenever x is an integer.

ANS: By substituting successively x = 0, x = 1 and x = 2 into S(x) we deduce that c,
a+ b+ c, and 4a+ 2b+ c are integers. As a consequence a+ b is an integer, which then
implies that 2a is an integer (write 2a = (4a+ 2b+ c)− 2(a+ b)− c).

If 2a is an even integer, then a is an integer, and thus b is an integer, resulting in S(x)
being an integer for all integers x.

If 2a is an odd integer, then a = k + 1/2 for some integer k. Hence, due to a + b = l
being an integer, there holds

S(x) = (k +
1

2
)x2 + (l − a)x+ c

= (k +
1

2
)x2 + (l − k − 1

2
)x+ c

= kx2 + (l − k)x+ c+
1

2
x(x− 1).

Since either x or x− 1 is even, x(x− 1)/2 is an integer, and so is S(x) for any integer x.
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