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History of Mathematics: Physical Mathematics
Michael A B Deakin1

The cartoon reproduced below first appeared in The New Yorker. It so caught the
fancy of the Mathematical Association of America that they acquired the rights to it;
they in their turn extended them to Function, which is why we can reproduce it here.
But what is wrong with the sign it depicts? The addition is correct!

What makes the cartoon funny is the incongruity of adding a date (measured in
years), an altitude (measured in feet – remember this is America) and a population
(determined by a headcount) all together. The three numbers are all measurements,
but they measure quite different things, and it is quite meaningless to add them up.

Numbers derived from measurements are multiples of a standard called a ‘unit’.
Thus a length is given in metres, where a metre is the standard unit of length that we
adopt. Similarly for other measurements. The units for the different measurements fall
into two principal categories. Some units are regarded as basic, while others are derived.

Australia has embraced the metric system, or Système International, and the units
adopted are the so-called SI units. The only countries not officially committed to this
system are the USA, Liberia and Myanmar (Burma), although the UK, Canada and
possibly other countries have failed to implement it very effectively. SI units are simple
and easy to work with; computations with them are simpler than those involving the
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traditional system still in use in the USA. Moreover, they are widely adopted. All the
same, there is nothing sacrosanct about them. Inconvenience aside, the US system
works perfectly well.

At present, the basic SI units are:

• the kilogram, a unit of mass (M)

• the metre, a unit of length (L)

• the second, a unit of time (T)

• the degree Kelvin, a unit of temperature (Θ)

• the ampere, a unit of electric current

• the candela, a unit of luminosity

• the mole, a unit of chemical concentration (C)

In this article, I will not consider all of these, but will concentrate attention on the
first three.

Two general points need to be made, however. There is nothing sacrosanct, as I
have said, about the choice of the SI units. Mathematically, there is no reason to prefer
them to the US system (clumsy though this may be). Indeed, the need for communica-
tion between researchers using different systems of units underlies the mathematical
techniques I shall describe in the course of this article.

The second point is that the choice of which units are taken as basic is not sacrosanct
either. I shall say rather less on this matter, but merely note that there is a current push
to have the mole downgraded and removed from the list of basic units and regarded
instead as derived. Some older systems regarded force as a fundamental unit, but such
usage is now obsolete. We might also reflect that astronomers often find it convenient
to measure distances in terms of times. The light-year is not an SI unit, but nonetheless
it is widely used.

Now consider the situation of two separate observers using different units. Sup-
pose that Observer A employs the SI, while Observer B makes use of the US units. We
may set up a conversion table between the two systems. Here is an example:

1 mile = 1609.344 metres 1 pound = 0.4536 kilograms
1 hour = 3600 seconds.

This table allows interconversion between the two systems of measurement.
Moreover, we can use it to deduce conversion factors connecting derived units as

well (speed for example). Suppose for example that a car covers a distance of 70 kilo-
metres (70 000 metres) in 45 minutes. In SI units, it has taken a time of 2700 seconds,
and so its speed is 25.9 metres per second. For an American, however, it has traveled
43.5 miles in 3/4 of an hour for a speed of 58 miles per hour.
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This situation may readily be generalized. Suppose that Observer A measures a
distance lA and a time tA in one set of units and Observer B measures the same distance
and time as lB and tB in another. Suppose that the conversion table connecting the two
systems reads lA = LlB and tA = TtB. Then Observer A calculates a speed νA = lA/tA
while Observer B calculates a speed νB = lB/tB. We may readily deduce from these
equations, however, that the ratio V = νA/νB = L/T. This simple deduction is summed
up by saying that speed has the dimensions of distance over time.

The dimensions of a physical quantity are usually designated by the use of square
brackets. So we write [V ] = L/T, or LT−1.

When it comes to the measurement of angles, a minor complication arises. The SI
unit of angular measure is the radian, and the radian measure of an angle θ, say, is
defined by placing its vertex at the centre of a circle of radius r and measuring s the
length of the arc lying between its two arms. The ratio s/r is now the radianmeasure of
the angle θ. But now notice that it makes no difference what unit of length we use. Just
as long as both s and r are measured in the same terms, the same result will be obtained
as the radian measure of the angle. (The use of degrees or grades for angular measures
amounts to the use of different scales of measurement for radial and circumferential
measures!) Thus the radian measure of an angle θ is given as [θ] = LL−1 = I (as it is
usual to write). The radian may be regarded as a ‘semi-basic unit’; there is exactly one
other, the steradian, which will not be considered here.

What I am calling ‘physical mathematics’ is the systematic use of these ideas to
explore physical laws. It is surprising how very much can be deduced about a physical
system simply by analyzing the dimensions of the quantities involved. The usual term
is ‘dimensional analysis’. The basic idea is that all physical laws must result in the
same fundamental formulae, whatever system of units is employed.
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The fundamental assumptions are:

• The situation is described by a mathematical formula.

• This formula must be independent of the system of units employed.

The origins of dimensional analysis are somewhat obscure. There are anticipa-
tions of it in the geometry of similar figures, going all the way back to Euclid. Some
of Galileo’s insights are seen as early examples of dimensional arguments. Joseph
Fourier (1768–1830) is another name often cited in this context. By the time of Os-
borne Reynolds (1842–1912) and James Clerk Maxwell (1831–1879), there was a well-
developed theory, but not yet systematized. Two names are most commonly associated
with the rise of the formal systematic theory. These are Aim Vaschy (1857–1899) and
Edgar Buckingham (1867–1940). Vaschy probably gave the statement of the basic the-
orem sooner than did Buckingham, but Buckingham’s statement was more influential
and so now it bears his name.

The key result is that if a problem involves n measured quantities, and if these n
involve r of the basic quantities, then (a few unusual cases aside) one can find n − r
combinations of the n, all different and all with dimension I . These combinations,
Buckingham designated by the letter Π (the Greek equivalent of P and standing for
‘product’, as each was a product of powers of the original quantities). By ‘different’
he meant that no member of the set had a value that could be deduced from those
of the others. The law connecting the original n quantities reduces to a formula con-
necting the n − r ‘dimensionless’ products. This result is now known as Buckingham’s
Π-Theorem.

Where exactly one such dimensionless product is involved, then the theorem tells
us this must be constant; where two are present, then one must be some function of the
other; with three, one must be a function of the other two, and so on.

In order to make its statement clearer, I will give a few examples, starting with a
simple one and working up to two more complicated ones. My first example is due
to the Russian mathematician Grigory Barenblatt (1927- ). It is a proof of Pythagoras’
Theorem.

A D B

C

ABC is a triangle, right-angled at C. Write |AB| = c, |BC| = a, |CA| = b. As readers
will know, Pythagoras’ Theorem states that c2 = a2 + b2. Barenblatt’s proof involves
drawing a line DC perpendicular to AB. He now considers the area of the triangle
ABC. Call this areaA. Now [A]= L2, because area is measured in square length units.
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The area will naturally depend on the length of the base, i.e. c. It will also depend on
the position of the point C. But C lies on a semi-circle with AB as diameter, and so its
position will be fixed by the value of the angleBAC, ϕ let us call it. We thus have three
quantities to consider: A, c and ϕ. Thus n = 3. Of our list of basic units, only one is
involved: length. So we have r = 1. Thus there are two products to consider. These can
be found in various ways, but the simplest pair is (∆c−2, ϕ). Thus the formula for the
area involves only these two quantities. If we make A the subject of the formula, we
must come up with ∆ = c2f(ϕ) where f(ϕ) where is an unknown function. (Actually
f(ϕ) = 1

4
sin 2ϕ, but we dont need to know this!)

Next Barenblatt considered the triangles ACD,BCD. We note that these are also
right-angled triangles and that 〈DAC = 〈BCD = ϕ. Thus we can use the same formula
to determine the areas of these two triangles. Let the areas be ∆1 and ∆2 respectively.
We now have ∆1 = b2f(ϕ), ∆2 = a2f(ϕ). But clearly, ∆ = ∆1 +∆2, and so

c2f(ϕ) = b2f(ϕ) + a2f(ϕ),

and Pythagoras’ Theorem follows.
Actually, this is a modern recasting of a very old proof, which you may well have

seen. It is a version of a proof based on similar triangles or (equivalently) Trigonometry.
This is a matter I leave to the reader to investigate further.

Geometric results from the Π-Theorem all use r = 1, as of all the basic units, only
length is involved. Thus, all depend on the classical results and do not make use of the
full power of the Π-Theorem. (This remark applies to the account I gave of Ptolemy’s
Theorem at the end of my previous article.)

However, if we move on to more complicated situations, then the wider scope of
Dimensional Analysis becomes more evident. Take the case of the simple pendulum.
Here we have a mass m swinging on the end of a rod, whose own mass is regarded
as so small as not to matter. The rod has a length l and it swings through an angle θ
under the influence of the force of gravity, represented by its weight mg, where g is a
constant. The period of oscillation will be called τ . We write out all these quantities
with their dimensions:

[m] = M, [l] = L, [θ] = I, [τ ] = T, [g] = LT−2.

Only the last of these requires any comment. But g is an acceleration, the acceleration
that a heavy object experiences when it falls under the influence of gravity, acceleration
is the time-rate of change of speed and hence the dimensions are as given.

Now, a glance at the list shows that m cannot be involved, because M occurs only
in [m] and so cannot be part of a dimensionless product. This leaves n = 4 and r = 2.
So our formula must involve 4 − 2, i.e. two dimensionless products. One is obvious:
θ itself. The other is less so, but it can readily be checked that [gτ 2l−1] = I. So our
formula connects gτ 2l−1 and θ. It is usual to make τ the subject of the formula, and so
reach

τ = f(θ)

√

l

g
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where f(θ) is some (unknown) function of θ. This is as far as this simple analysis can
take us, but it already says a lot. A full treatment is very complicated, but it tells us
(among other things) that when θ is small, f(θ) is approximately 2π.

My next example is perhaps the most spectacular example of the power of dimen-
sional analysis. Although different accounts of it disagree over details, the principal
lines of the story are clear. The US exploded the first atomic bomb in 1944 and made a
film of the explosion. A copy of this film was later declassified and reached the British
researcher G. I. Taylor. By analyzing the film frame by frame, he was able to deduce
the energy released by the blast at a time when this figure was still top secret. What
follows is an account giving the gist of part of his argument, although I am greatly
oversimplifying his calculation.

Let R be the radius of the fireball generated by the explosion, t the time since det-
onation, E the energy released and ρ the density of the air outside the fireball (the
density of the air inside the fireball he took to be very small, almost zero, because of
the extreme heat).

We now have, using known results:

[R] = L, [t] = T, [E] = ML2T−2, [ρ] = ML−3.

There four quantities involved here, i.e. n = 4. We also have r = 3, because mass,
length and time are all involved. We thus expect to find one dimensionless ratio, which
can be taken to be Π = EρR−5t2. (Check, as an exercise, that this really is dimension-
less.) The required law connecting R, t, E and ρ is thus of the form Π = EρR−5t2 = C,
where C is a constant. This equation may be simplified to read
R = At2/5, i.e. where A has the (constant) value (EρC−1)1/5. Taking logarithms, Taylor
found logR = logA + 2

5
log t and so he plotted logR against log t and indeed found a

straight line with a slope 2/5 as he had predicted. He now also knew the value of A
and so, also knowing ρ, he was in the position to calculate E if only he knew the value
of the constant C. Now Taylor could perhaps have deduced this from experiments
with conventional explosives as some accounts suggest he did, but actually this ap-
proach involves some inaccuracies that he was not willing to incur. [An atomic bomb
generates its explosion from a relatively small centre, which he approximated by a
point. Conventional explosives, by contrast need a much more considerable amount
of material to generate the fireball and the ‘point-source’ approximation is not a good
one.] So rather he undertook a more detailed analysis that enabled him to calculate
this constant. (It is very nearly 1.) He then knew the secret energy!

These three examples cover only a very small subset of the many uses to which the
theory has been put. Readers will find many more in any one of the many books
devoted to the subject. Barenblatt’s Dimensional Analysis (English translation by P
Makinen, published by Gordon & Breach, 1987) is one of his several books in the
area. Others that can be recommended are Isaacson & Isaacson’s Dimensional Methods
in Engineering and Physics (Arnold, 1975), Kline’s Similitude and Approximation Theory
(McGraw-Hill, 1965), Langhaar’s Dimensional Analysis and Theory of Models (Krieger,
1960), Sedov’s Similarity and Dimensional Methods (Infosearch, 1959) and an older, but
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still excellent account, Focken’s Dimensional Methods and their Applications (Arnold,
1953).

Taylor’s calculation of the energy released by the atomic bomb was first published
in the Proceedings of the Royal Society in 1950, and was republished in his Collected Works
(Cambridge, 1971). It is also discussed by Barenblatt in the book detailed above, and
also elsewhere. Another account is that by Bluman in the International Journal of Math-
ematical Education in Science and Technology (Vol. 14, 1983, pp. 259–272).

The promulgation of the systematic theory most influentially dates from a paper by
Buckingham in The Physical Review, January 1900. Very many proofs of his Π-theorem
have been published. One of the best is that by Brand in Archive for Rational Mechanics
and Analysis (Vol. 1, 1957, pp. 35–45).

This simple list is only a sample of what is available in the literature. There are
now many websites devoted to this material. A Google search conducted in mid-2007
revealed 103,000,000 of them! I looked at the first half dozen or so, starting with the
Wikipedia entry. All of those I consulted were of excellent quality.
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