
Parabola Volume 43, Issue 3 (2007)

Google-type Page Rank Algorithms1

Greg Doherty2

The success of Google is predominantly due to its page rank algorithm. All web
crawlers can index each page for the terms contained in each page. In response to a
query such as ‘page rank algorithm’ Google presents the first 10 items out of a possible
2.5 million. No user can trawl through the whole 2.5 million pages, so we rely on the
page rank algorithm to give us the pages we most want to see in the first 10 or 20 or
30 pages we are prepared to bring up on our screens. The function of the page rank
algorithm is to satisfy that user requirement. Google’s initial takeup in preference to
existing search engines such as Alta Vista was due to their algorithm.

Page rank algorithms have to be automated, because of the huge number (billions)
of pages which have been indexed, and they have to be re-run to reflect additions in
the total web content. To illustrate the ideas behind Google’s page rank algorithm,
consider a small web world consisting of just four pages with links between them as
shown in the following diagram. An arrow pointing from page 2 to page 4 means that
page 2 contains a reference to page 4.
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We would like to compute a vector xk reflecting the importance of page k. A simple
minded approach would be just to count the number of links to each page.

k 1 2 3 4
Links to page k 2 1 3 2

1Based on a SIAM Review article, but of course a Google search will find many others on the web.
2Greg Doherty is an Associate Professor in the School of Mathematics and Applied Statistics at the

University of Wollongong.
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This approach does not reflect the fact that some pages might be more significant than
others, for some reason other than just the number of links to it, and also leaves open
the possibility of artificially inflating the rank of a particular page by generating other
trivial or advertising pages whose only function is to promote the importance of a
particular page. Significant refinements are:

• Weight each in-link by the importance of the page which links to it.

• Give each page a total vote of 1.0, however many pages it links to, so that a page
j with outgoing linksmj will have a weight assigned to it of

xj

mj
.

If Lk is the set of pages which link to page k, the importance xk can be written

xk =
∑

jǫLk,j 6=k

xj

mj

.

For our simple example of four web pages, we have:
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This can be written using matrix notation as
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which can be interpreted as an eigenvalue eigenvector problem

Ax = λx

where the eigenvalue is 1.
How do we know that the matrix A has a unit eigenvalue? We note that A is a

column-stochastic matrix, which is to say that each column sums to 1.0. This is a con-
sequence of the fact that we gave each page a total vote of 1, so provided each page has
at least one outgoing link, each column will sum to 1. If we consider that
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and that the eigenvalues of A and AT are the same, we can see that Amust have a unit
eigenvalue whose corresponding eigenvector contains the page ranks that we seek.

What is the situation with the real web?

1. The web consists of billions of pages. The consequence of this is that computing
the eigenvector is going to be a massive computational undertaking. It does not
have to be re-computed for each response to a query that Google makes. All
that is required, which is still substantial, is to serve up the pages containing
the terms we searched for, in the order corresponding to decreasing eigenvector
components. However, the eigenvector does have to be recomputed regularly to
reflect the evolution of web content.

2. There are pages without any outgoing links. This means that we can no longer
guarantee that the matrix AT , and therefore the matrix A, has a unit eigenvalue.

3. There are groups of pages (cliques in graph theory terms) which have no links to
pages outside their clique. This means that even if there were no pages with no
outgoing links, there would be multiple eigenvectors corresponding to the unit
eigenvalue. We call such a matrix A reducible.

The complications we have identified can be addressed by computing, instead of
the matrix A, the matrix

C = µA+ (1− µ)B

where B is the matrix with every element bi,j =
1

N
, N being the total number of pages

indexed, and where µ is a small positive parameter chosen to avoid loss of significance
in the computation.

Adding a multiple of the matrix B makes the matrix C irreducible, in that now ev-
ery page is linked to every other page. At the same time it makes every element of the
matrix C positive, and retains the original column-stochastic property for any of the
pages that already had outgoing links. We can apply the Perron-Frobenius theorem
(1906) to the matrix C to assert that it has a real positive eigenvalue equal to its spectral
radius, that this eigenvalue is actually bigger in modulus than any of the other eigen-
values of C , and that its corresponding eigenvector has all real positive components.

This dominant eigenvalue will not necessarily have eigenvalue 1 in the presence of
nodes with no outgoing links, but its corresponding eigenvector will still be suitable
for ranking all of the pages on the web. The fact that the eigenvalue is dominant means
that it can be computed iteratively, using the power method, which we can summarise
as:
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x0 = a vector with all components
1

N
Repeat until convergence

y = Cxk−1

η =
∑

yj

xk =
1

η
y.

In fact there are better methods than the simple power method, such as Chebyshev
iteration, to converge to the dominant eigenvalue-eigenvector combination, whichGoogle
undoubtedly uses, but the power method is easy to explain. If zj are the eigenvectors
of C, with corresponding eigenvalues λj , after k steps of the power method, we have

x0 =
∑

αjzj

xk = α1z1 +
∑

j>1

(

λj

λ1

)k

αjzj.

As the eigenvalue λ1 is larger in modulus than any of the other λj it is easy to see
that the power method will converge to the required eigenvector z1.

One point worth observing is the use of the L1 norm rather than the L2 norm to
re-normalise the eigenvector at each step of the iteration (dividing by η, the sum of the
elements of x). We have noted before that the original matrix A, and hence B and C

are square matrices with billions of rows. Each web page is only likely to have a small
number of outgoing links, so the matrixAwill be very sparse, in contrast to bothB and
C which are both full matrices. If we had to multiply by the full matrix C this would
be an extremely expensive computational step. However, with the L1 renormalisation
we note that

Cxi−1 = (µ A+ (1− µ) B)xi−1

= µ Axi−1 + (1− µ)x0

which means that multiplication by C is no more expensive than multiplying by A.
You can see the effect of using C rather than A on the eigenvector. Adding the same

small constant to each of the components, which is already positive, should not change
the rank ordering of those components.
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