
Parabola Volume 44, Issue 1 (2008)

Solutions to Problems 1251–1260

Q1251 Show that the product of 4 consecutive integers is always one less than a perfect
square.

ANS: We can denote the 4 consecutive integers by n− 1, n, n+ 1 and n+ 2. Then

(n− 1)n(n+ 1)(n+ 2) = [n(n+ 1)][(n− 1)(n+ 2)]

= (n2 + n)(n2 + n− 2)

= [(n2 + n− 1) + 1][(n2 + n− 1)− 1]

= (n2 + n− 1)2 − 1.

Q1252 Given n distinct positive integers a1, a2, . . . , an, none of which is divisible by a
prime number greater than 3, prove that

1

a1
+

1

a2
+ · · ·+ 1

an
< 3.

ANS: Since no integer ai, i = 1, . . . , n, is divisible by a prime number greater than 3,
each integer ai can be expressed in the form ai = 2pi3qi where pi and qi are non-negative
integers. The given integers ai being distinct, we have (pi, qi) 6= (pj, qj) if i 6= j. Assume
that there are only r distinct values of pi, namely p1, . . . , pr, 1 ≤ r ≤ n. (For those pairs
(pi, qi) having the same value pi, the values of qi are all different.) We can partition all n
pairs (pi, qi) into r groups, in each group the pi’s are the same but the qi’s are different.
Then

n∑
i=1

1

ai
=

n∑
i=1

1

2pi3qi

=
1

2p1

∑
group 1

1

3qi
+ · · ·+ 1

2pr

∑
group r

1

3qi

<
1

2p1

∑ 1

3qi
+ · · ·+ 1

2pr

∑ 1

3qi
,

where the sums on the last row of the right-hand side are taken over all different values
of qi. Therefore,

n∑
i=1

1

ai
<

(
r∑

i=1

1

2pi

)(∑ 1

3qi

)
=

(∑ 1

2pi

)(∑ 1

3qi

)
,

where the first summation on the right hand side is taken over all distinct values of pi,
and the second is taken over all distinct values of qi. These distinct values of pi and qi
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being nonnegative integers, we deduce that

n∑
i=1

1

ai
<

(
∞∑
k=0

1

2k

)(
∞∑
l=0

1

3l

)
=

1

1− 1/2
× 1

1− 1/3
= 3.

Q1253 Let p0 be a prime number. We define recursively pk = pk−1 + 2k, k = 1, 2, . . .,
and stop the recurrence when pk is a composite number. The last index in the sequence,
which depends on the initial value p0, is denoted by k(p0). E.g., if p0 = 3, then p1 = 5
and p2 = 9, so that k(3) = 2. For a given p0, find an integer that k(p0) cannot exceed.

ANS: (correct answers submitted by John Barton, Victoria)

Comment: It is easy to see that

pk = p0 + 2(1 + 2 + · · ·+ k) = p0 + k(k + 1).

With k = p0 − 1 we have pk = p20, which is a composite number. So k(p0) ≤ p0 − 1. Note
that k(7) = 2 < 7− 1.

A little arithmetical exploration, beginning with, say, 11 or 41, throws up the suggestion
that it could be profitable to explore the question: “What happens to our selected prime
p0, if we add p0 − 1 terms of the arithmetical progression 2, 4, 6, 8 . . . ? ” The sum
2 + 4 + 6 + 8 + · · · |(2p0 − 2) is easily seen, by writing the terms in reverse order, to be
p0(p0 − 1). Adding this to p0 we get p20, a composite number. Thus k(p0) cannot exceed
p0 − 1.

(11 & 41 are examples of primes in which k(p0) = p0 − 1)

Q1254 Given a triangle ∆ABC, construct a square DEFG enclosed by the triangle
such that D and E are on AB while F and G are on BC and AC, respectively.

Construct the square DEFG as follows:

1. Choose a point H on AC;

2. Draw the square HKIJ ;

2



3. Produce AJ to meet BC at F ;

4. Draw EF ⊥ AB, FG ‖ AB, and DG ⊥ AB.

DEFG is the required square.

Q1255 Let a and b be two real numbers satisfying a+ b 6= −1 and b 6= 0. Show that if
the equation

x2 + ax+ b = 0

has exactly one solution between 0 and 1, then the equation

1

x+ 2
+

a

x+ 1
+
b

x
= 0

has exactly one positive solution.

ANS: Let f(x) = x2 + ax+ b. Since the equation

x2 + ax+ b = 0

has exactly one solution between 0 and 1, f(0) and f(1) are of opposite sign, implying

f(0)f(1) = b(1 + a+ b) < 0. (1)

Now rewrite the equation
1

x+ 2
+

a

x+ 1
+
b

x
= 0

as
(1 + a+ b)x2 + (1 + 2a+ 3b)x+ 2b = 0. (2)

The discriminant is
∆ = (1 + 2a+ 3b)2 − 8b(1 + a+ b).

Inequality (1) yields ∆ > 0, so that (2) has exactly 2 solutions α and β satisfying

αβ = − 2b

1 + a+ b
< 0

due to (1). So there is exactly one positive solution.

Q1256 Assume that a and b are two integers such that a2 + b2 is divisible by 4. Show
that a and b are both even.

ANS: Assume that a is odd, i.e., a = 2k + 1 for some integer k. Then since a2 + b2 is
divisible by 4 we have

a2 + b2 = 4l for some integer l,

implying
b2 = 4l − (2k + 1)2 = 4(l − k2 − k − 1) + 3. (3)

Now if b is even then b2 is divisible by 4, contradicting (3). If b is odd, i.e., b = 2m + 1
then b2 = 4m2 + 4m + 1 which also contradicts (3). Therefore a cannot be odd. Similar
argument implies b is even.
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Q1257 Let ABC be an acute angled triangle with sides a, b and c, and altitudes ha, hb
and hc. Prove that

1

2
<
ha + hb + hc
a+ b+ c

< 1.

ANS:

The altitudes of ∆ABC are concurrent at the orthocentre P , which lies within ∆ABC
because the triangle is acute-angled. Therefore,

PA+ PB > c, PB + PC > a, PC + PA > b,

which implies
2(PA+ PB + PC) > a+ b+ c.

On the other hand, PA < ha, PB < hb and PC < hc, so that

a+ b+ c

2
< ha + hb + hc,

i.e.,
ha + hb + hc
a+ b+ c

>
1

2
.

Moreover,
ha < b, hb < c, hc < a,

implying ha + hb + hc < a+ b+ c,

i.e.,
ha + hb + hc
a+ b+ c

< 1.

Q1258 A plane leaves a town of latitude 1◦S, flies x km due South, then x km due East,
and x km due North. At this point, the plane is 3x km due East of the starting point.
Find x.

ANS:
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Let A be the starting point, B be the point x km due S of A, C be x km due E of B,
and D be x km due N of C. Since the difference in longitude between A and D is equal
to that between B and C, and since the arc AD of the small circle centred at E is three
times the arc BC of the small circle centred at F , the radius EA is three times the radius
FB. Since A is of latitude 1◦S, the angle ∠OAE = 1◦. So EA = OA cos 1◦, which implies

FB =
1

3
OA cos 1◦ = OA cos θ◦,

where θ is the latitude of B. It follows that

cos θ◦ =
1

3
cos 1◦,

which implies

θ = cos−1(
1

3
cos 1◦) = 70.53◦,

so that ∠AOB = θ − 1 = 69.53◦. Hence,

x = length of the arc AB = OA× ∠AOB (in radian) =
π

180
× 69.53×OA.

Taking the radius of the earth to be 6, 367 km we obtain x ≈ 7, 727 km.

Q1259 Prove that
√

2,
√

3 and
√

5 cannot be terms of an arithmetic progression.

ANS: Assume that
√

2,
√

3 and
√

5 are terms of an arithmetic progression. Let d be the
common difference. Then

√
3 =
√

2 + kd and
√

5 =
√

2 + ld for some nonzero integers k
and l. It follows that √

3−
√

2

k
= d =

√
5−
√

2

l
.

Rearranging we obtain √
2(k − l) = k

√
5− l

√
3,
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and by squaring both sides

2(k − l)2 = 5k2 + 3l2 − 2
√

15kl.

Therefore,
√

15 =
5k2 + 3l2 − 2(k − l)2

2kl
,

which is a contradiction as
√

15 is irrational while the right hand side is rational.

Q1260 Show that n6 − n2 is divisible by 60 for any integer n > 1.

ANS: Note that n6−n2 = n2(n4− 1) = n2(n2 + 1)(n− 1)(n+ 1). It suffices to show that
n6 − n2 is divisible by 3, 4 and 5.

• Since n− 1, n and n+ 1 are three consecutive integers, n6 − n2 is divisible by 3.

• If n is even then n2 is divisible by 4, and so is n6−n2. If n is odd, namely n = 2k+1,
then n2 − 1 = 4k2 + 4k, so n6 − n2 is divisible by 4.

• To prove that n6 − n2 is divisible by 5 we consider the following cases:

1. If n = 5l then clearly n6 − n2 is divisible by 5.

2. If n = 5l + 1 then n− 1 = 5l and thus n6 − n2 is divisible by 5.

3. If n = 5l + 2 or n = 5l + 3 then n2 + 1 is divisible by 5 and so is n6 − n2.

4. If n = 5l + 4 then n+ 1 is divisible by 5 and so is n6 − n2.

All cases are exhausted, so n6 − n2 is divisible by 5.

6


