Parabola Volume 44, Issue 1 (2008)

Solutions to Problems 1251–1260

Q1251 Show that the product of 4 consecutive integers is always one less than a perfect square.

ANS: We can denote the 4 consecutive integers by $n-1$, $n, n+1$ and $n+2$. Then

$$
(n-1)n(n+1)(n+2) = [n(n+1)][(n-1)(n+2)]
$$

= $(n^2 + n)(n^2 + n - 2)$
= $[(n^2 + n - 1) + 1][(n^2 + n - 1) - 1]$
= $(n^2 + n - 1)^2 - 1$.

Q1252 Given *n* distinct positive integers a_1, a_2, \ldots, a_n , none of which is divisible by a prime number greater than 3, prove that

$$
\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < 3.
$$

ANS: Since no integer a_i , $i = 1, \ldots, n$, is divisible by a prime number greater than 3, each integer a_i can be expressed in the form $a_i = 2^{p_i}3^{q_i}$ where p_i and q_i are non-negative integers. The given integers a_i being distinct, we have $(p_i, q_i) \neq (p_j, q_j)$ if $i \neq j$. Assume that there are only r distinct values of p_i , namely p_1, \ldots, p_r , $1 \leq r \leq n$. (For those pairs (p_i, q_i) having the same value p_i , the values of q_i are all different.) We can partition all n pairs (p_i, q_i) into r groups, in each group the p_i 's are the same but the q_i 's are different. Then

$$
\sum_{i=1}^{n} \frac{1}{a_i} = \sum_{i=1}^{n} \frac{1}{2^{p_i} 3^{q_i}}
$$

= $\frac{1}{2^{p_1}} \sum_{\text{group } 1} \frac{1}{3^{q_i}} + \dots + \frac{1}{2^{p_r}} \sum_{\text{group } r} \frac{1}{3^{q_i}}$
< $\frac{1}{2^{p_1}} \sum_{j=1}^{n} \frac{1}{3^{q_i}} + \dots + \frac{1}{2^{p_r}} \sum_{j=1}^{n} \frac{1}{3^{q_i}},$

where the sums on the last row of the right-hand side are taken over all different values of q_i . Therefore,

$$
\sum_{i=1}^n \frac{1}{a_i} < \left(\sum_{i=1}^r \frac{1}{2^{p_i}}\right) \left(\sum \frac{1}{3^{q_i}}\right) = \left(\sum \frac{1}{2^{p_i}}\right) \left(\sum \frac{1}{3^{q_i}}\right),
$$

where the first summation on the right hand side is taken over all distinct values of p_i , and the second is taken over all distinct values of q_i . These distinct values of p_i and q_i

being nonnegative integers, we deduce that

$$
\sum_{i=1}^{n} \frac{1}{a_i} < \left(\sum_{k=0}^{\infty} \frac{1}{2^k}\right) \left(\sum_{l=0}^{\infty} \frac{1}{3^l}\right) = \frac{1}{1 - 1/2} \times \frac{1}{1 - 1/3} = 3.
$$

Q1253 Let p_0 be a prime number. We define recursively $p_k = p_{k-1} + 2k, k = 1, 2, \ldots$ and stop the recurrence when p_k is a composite number. The last index in the sequence, which depends on the initial value p_0 , is denoted by $k(p_0)$. E.g., if $p_0 = 3$, then $p_1 = 5$ and $p_2 = 9$, so that $k(3) = 2$. For a given p_0 , find an integer that $k(p_0)$ cannot exceed.

ANS: (correct answers submitted by John Barton, Victoria)

Comment: It is easy to see that

$$
p_k = p_0 + 2(1 + 2 + \dots + k) = p_0 + k(k + 1).
$$

With $k = p_0 - 1$ we have $p_k = p_0^2$, which is a composite number. So $k(p_0) \leq p_0 - 1$. Note that $k(7) = 2 < 7 - 1$.

A little arithmetical exploration, beginning with, say, 11 or 41, throws up the suggestion that it could be profitable to explore the question: "What happens to our selected prime p_0 , if we add $p_0 - 1$ terms of the arithmetical progression 2, 4, 6, 8 ...? " The sum $2 + 4 + 6 + 8 + \cdots (2p₀ - 2)$ is easily seen, by writing the terms in reverse order, to be $p_0(p_0-1)$. Adding this to p_0 we get p_0^2 , a composite number. Thus $k(p_0)$ cannot exceed $p_0 - 1$.

(11 & 41 are examples of primes in which $k(p_0) = p_0 - 1$)

Q1254 Given a triangle $\triangle ABC$, construct a square $DEFG$ enclosed by the triangle such that D and E are on AB while F and G are on BC and AC, respectively.

Construct the square $DEFG$ as follows:

- 1. Choose a point H on AC ;
- 2. Draw the square $HKIJ$;
- 3. Produce AJ to meet BC at F ;
- 4. Draw $EF \perp AB$, $FG \parallel AB$, and $DG \perp AB$.

 $DEFG$ is the required square.

Q1255 Let a and b be two real numbers satisfying $a + b \neq -1$ and $b \neq 0$. Show that if the equation

$$
x^2 + ax + b = 0
$$

has exactly one solution between 0 and 1, then the equation

$$
\frac{1}{x+2} + \frac{a}{x+1} + \frac{b}{x} = 0
$$

has exactly one positive solution.

ANS: Let $f(x) = x^2 + ax + b$. Since the equation

$$
x^2 + ax + b = 0
$$

has exactly one solution between 0 and 1, $f(0)$ and $f(1)$ are of opposite sign, implying

$$
f(0)f(1) = b(1 + a + b) < 0. \tag{1}
$$

Now rewrite the equation

$$
\frac{1}{x+2} + \frac{a}{x+1} + \frac{b}{x} = 0
$$

as

$$
(1 + a + b)x2 + (1 + 2a + 3b)x + 2b = 0.
$$
 (2)

The discriminant is

$$
\Delta = (1 + 2a + 3b)^2 - 8b(1 + a + b).
$$

Inequality [\(1\)](#page-2-0) yields $\Delta > 0$, so that [\(2\)](#page-2-1) has exactly 2 solutions α and β satisfying

$$
\alpha \beta = -\frac{2b}{1+a+b} < 0
$$

due to [\(1\)](#page-2-0). So there is exactly one positive solution.

Q1256 Assume that a and b are two integers such that $a^2 + b^2$ is divisible by 4. Show that a and b are both even.

ANS: Assume that a is odd, i.e., $a = 2k + 1$ for some integer k. Then since $a^2 + b^2$ is divisible by 4 we have

$$
a^2 + b^2 = 4l \quad \text{for some integer } l,
$$

implying

$$
b2 = 4l - (2k + 1)2 = 4(l - k2 - k - 1) + 3.
$$
 (3)

Now if b is even then b^2 is divisible by 4, contradicting [\(3\)](#page-2-2). If b is odd, i.e., $b = 2m + 1$ then $b^2 = 4m^2 + 4m + 1$ which also contradicts [\(3\)](#page-2-2). Therefore a cannot be odd. Similar argument implies b is even.

Q1257 Let *ABC* be an acute angled triangle with sides a, b and c, and altitudes h_a , h_b and h_c . Prove that

$$
\frac{1}{2} < \frac{h_a + h_b + h_c}{a + b + c} < 1.
$$

ANS:

The altitudes of $\triangle ABC$ are concurrent at the orthocentre P, which lies within $\triangle ABC$ because the triangle is acute-angled. Therefore,

$$
PA + PB > c, \quad PB + PC > a, \quad PC + PA > b,
$$

which implies

$$
2(PA + PB + PC) > a + b + c.
$$

On the other hand, $PA < h_a$, $PB < h_b$ and $PC < h_c$, so that

$$
\frac{a+b+c}{2} < h_a + h_b + h_c,
$$

i.e.,

$$
\frac{h_a + h_b + h_c}{a + b + c} > \frac{1}{2}.
$$

Moreover,

$$
h_a < b, \quad h_b < c, \quad h_c < a,
$$

implying $h_a + h_b + h_c < a + b + c$,

i.e.,
$$
\frac{h_a + h_b + h_c}{a + b + c} < 1.
$$

Q1258 A plane leaves a town of latitude $1°S$, flies x km due South, then x km due East, and x km due North. At this point, the plane is $3x$ km due East of the starting point. Find x.

ANS:

Let A be the starting point, B be the point x km due S of A, C be x km due E of B, and D be x km due N of C. Since the difference in longitude between A and D is equal to that between B and C, and since the arc AD of the small circle centred at E is three times the arc BC of the small circle centred at F , the radius EA is three times the radius FB. Since A is of latitude 1°S, the angle $\angle OAE = 1^\circ$. So $EA = OA \cos 1^\circ$, which implies

$$
FB = \frac{1}{3}OA\cos 1^{\circ} = OA\cos \theta^{\circ},
$$

where θ is the latitude of B. It follows that

$$
\cos \theta^\circ = \frac{1}{3} \cos 1^\circ,
$$

which implies

$$
\theta = \cos^{-1}(\frac{1}{3}\cos 1^{\circ}) = 70.53^{\circ},
$$

so that $\angle AOB = \theta - 1 = 69.53^{\circ}$. Hence,

$$
x =
$$
length of the arc $AB = OA \times \angle AOB$ (in radian) $= \frac{\pi}{180} \times 69.53 \times OA$.

Taking the radius of the earth to be 6,367 km we obtain $x \approx 7,727$ km.

Q1259 Prove that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{5}$ cannot be terms of an arithmetic progression. ANS: Assume that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{5}$ are terms of an arithmetic progression. Let d be the AINS: Assume that $\sqrt{2}$, $\sqrt{3}$ and $\sqrt{5}$ are terms of an arithmetic progression. Let *a* be the common difference. Then $\sqrt{3} = \sqrt{2} + kd$ and $\sqrt{5} = \sqrt{2} + ld$ for some nonzero integers *k* and l. It follows that √ √ √ √

$$
\frac{\sqrt{3} - \sqrt{2}}{k} = d = \frac{\sqrt{5} - \sqrt{2}}{l}.
$$

Rearranging we obtain

$$
\sqrt{2}(k-l) = k\sqrt{5} - l\sqrt{3},
$$

and by squaring both sides

$$
2(k - l)^2 = 5k^2 + 3l^2 - 2\sqrt{15}kl.
$$

Therefore,

$$
\sqrt{15} = \frac{5k^2 + 3l^2 - 2(k - l)^2}{2kl},
$$

which is a contradiction as $\sqrt{15}$ is irrational while the right hand side is rational.

Q1260 Show that $n^6 - n^2$ is divisible by 60 for any integer $n > 1$.

ANS: Note that $n^6 - n^2 = n^2(n^4 - 1) = n^2(n^2 + 1)(n - 1)(n + 1)$. It suffices to show that $n^6 - n^2$ is divisible by 3, 4 and 5.

- Since $n-1$, n and $n+1$ are three consecutive integers, $n^6 n^2$ is divisible by 3.
- If *n* is even then n^2 is divisible by 4, and so is $n^6 n^2$. If *n* is odd, namely $n = 2k + 1$, then $n^2 - 1 = 4k^2 + 4k$, so $n^6 - n^2$ is divisible by 4.
- To prove that $n^6 n^2$ is divisible by 5 we consider the following cases:
	- 1. If $n = 5l$ then clearly $n^6 n^2$ is divisible by 5.
	- 2. If $n = 5l + 1$ then $n 1 = 5l$ and thus $n^6 n^2$ is divisible by 5.
	- 3. If $n = 5l + 2$ or $n = 5l + 3$ then $n^2 + 1$ is divisible by 5 and so is $n^6 n^2$.
	- 4. If $n = 5l + 4$ then $n + 1$ is divisible by 5 and so is $n^6 n^2$.

All cases are exhausted, so $n^6 - n^2$ is divisible by 5.