
Parabola Volume 44, Issue 3 (2008)

Polynomial Interpolation
Bill McKee1

Introduction
In an earlier article in Parabola (Volume 42, Number 2, 2006), I showed how we

could find a straight line which is drawn so as to approximately fit some data points
via the process of least-squares fitting. This was then generalised to approximately fit
other types of functions to data points.

This article will discuss the related problem of finding a function (in this case a poly-
nomial) which passes exactly through some data points. For example, we may have
temperature readings taken every hour and wish to estimate the temperature at a point
of time somewhere between two of the readings. You may ask why we would choose
a polynomial rather than some other function. Well, one reason is that polynomials are
simple functions which are easy to understand and to evaluate. The expressions to be
discussed here also form the bases for more advanced work in numerical applications
of mathematics, such as the approximate evaluation of things like areas and volumes
via integration.
Reminder - The Sigma Notation for Sums

Ifm is less than or equal to n (usually written asm ≤ n) we use a shorthand notation
to indicate sums of quantities as follows:

n∑
i=m

ai = am + am+1 + . . .+ an. (1)

Often m = 0 or 1. Notice that we could have written the index of summation in (1) as j
or k or l or anything except m or n which designate the first and last terms in the sum.
A polynomial of degree n can be written as

n∑
i=0

bix
i = b0 + b1x+ b2x

2 + . . .+ bnx
n.

The use of this sigma notation is quite standard and saves writing down long strings
of symbols, as does the Pi notation for products which we will now introduce.
The Pi Notation for Products

If m is less than or equal to n we use a shorthand notation to indicate products of
quantities as follows:

1Dr Bill McKee is a Visiting Fellow in The School of Mathematics and Statistics at the Univeristy of
New South Wales.

1

n∏
i=m

ai = am × am+1 × . . .× an.

Often m = 0 or 1.
The Problem of Polynomial Interpolation

Suppose that we have n + 1 data points (xi, yi) for i = 0, 1, . . . , n, where the xi are
all different. The xi need not be equally spaced, nor need they be in increasing order.
There are n + 1 pieces of information here and we seek a polynomial pn(x) with n + 1
coefficients which passes exactly through the n+1 data points. Thus we seek the n+1
coefficients b0, b1, . . . , bn such that

pn(x) =
n∑

i=0

bix
i = b0 + b1x+ b2x

2 + . . .+ bnx
n

has the property that pn(xi) = yi for i = 0, . . . n. Thus with i = 0 we require

b0 + b1x0 + b2x
2
0 + . . .+ bnx

n
0 = y0

with analogous equations at each of the n other points x1, x2, . . . , xn. We are thus led
to the problem of solving a system of n+ 1 simultaneous linear equations for the n+ 1
coefficients bi. This can always be done but it is a messy and time-consuming process
which gets even more time-consuming as n increases. There has to be a better way and
there is. Read on!
The Lagrange Form

The process begins with the construction of a polynomial of degree n which is zero
at all the xi except one. Let us start with x0. The polynomial

T0(x) =
n∏

i=1

(x− xi) = (x− x1)(x− x2) . . . (x− xn)

has the property that it is of degree exactly n and takes the value 0 at the points
x1, x2, . . . , xn (but not at x0). If we now construct

L0(x) =
T0(x)

T0(x0)
=

n∏
i=1

(x− xi)
(x0 − xi)

we have a polynomial of degree n which takes the value 1 at x = x0 and the value 0
at all the other xi. Hence, multiplying by y0 we have a polynomial y0L0(x) of degree n
which takes the required value y0 at x = x0 and is 0 at all the other points xi for i 6= 0.

It should now be clear what we have to do. We repeat the above process at each of
the xi to construct Li(x) and so form

pn(x) =
n∑

i=0

yiLi(x) (2)

2

Figure 1: A Lagrange polynomial which takes the value 0 at x = −2, x = −1, and x = 2
and the value 1 at x = 0.

where

Li(x) =
n∏
j=0
j 6=i

(x− xj)
(xi − xj)

and j 6= i means that we omit the term with j = i in the product. The polynomial
pn(x) has degree n or less and passes exactly through the n + 1 data points (xi, yi) for
i = 0, 1, . . . , n. The reason why the degree could be less than n even though the Li(x)
all have degree exactly n is that cancellations could occur when we construct pn(x). For
example, when n = 2 we have three data points and the required polynomial would
in general have degree 2, but three points just might happen to lie on a straight line
giving a polynomial of degree 1 not 2. Henceforth when we say that a polynomial is of
degree n we will really mean that the degree is generally n but could be less than n in
some special cases.

The polynomial Li(x) is sometimes called a Lagrange Polynomial. A typical example
is shown in Figure 1. The figure (2) is referred to as the Lagrange form of the interpolating
polynomial.

Now let us find this interpolating polynomial in a particular case. Consider the
data shown in Table 1.

3

i 0 1 2 3
xi −2 −1 0 2
yi −17 −5 −1 7

Table 1: A typical data set

From these we find

L0(x) = −(x+ 1)x (x− 2)

8

L1(x) =
(x+ 2)x (x− 2)

3

L2(x) = −(x+ 2)(x+ 1)(x− 2)

4

L3(x) =
(x+ 2)(x+ 1)x

24
.

The required interpolating polynomial is thus

p3(x) = −17L0(x)− 5L1(x)− L2(x) + 7L3(x) = . . . = x3 − x2 + 2x− 1,

which is shown in Figure 2.
Thus far, we have shown how to construct a polynomial pn(x) of degree n which

passes exactly through the n+ 1 points (xi, yi) for i = 0, . . . , n. An immediate question
arises: might not some other procedure for constructing a polynomial with the re-
quired properties produce a different result? To investigate this question, suppose that
qn(x) is a different polynomial of degree n which also has the property that qn(xi) = yi,
for i = 0, . . . , n and define rn(x) = pn(x)− qn(x). Then rn(x) is also a polynomial of de-
gree n and has the property that rn(xi) = yi − yi = 0 for i = 0, . . . , n. Since a non-trivial
polynomial of degree n can have at most n zeros, it is impossible for rn(x) to have the
n + 1 zeros xi for i = 0, . . . , n. Hence, no such polynomial qn(x) can exist, i.e., pn(x) is
unique. However, there are an infinite number of polynomials of degree greater than
n which will pass through the given data points. For example, the polynomial

P(x) = pn(x) +
n∏

j=0

(x− xj)

also passes exactly through the data points as does

Q(x) = pn(x) + g(x)
n∏

j=0

(x− xj)

where g(x) is any polynomial. In this sense, pn(x) is the ‘smallest’ polynomial to pass
exactly through the given data points. Indeed, if we take g(x) to be any continuous
function we can see that there are an infinite number of functions which pass exactly
through the given data points.

4

Figure 2: The interpolating polynomial of degree 3 which passes through the points
(−2,−17), (−1,−5), (0,−1) and (2, 7)

5

So far, so good. Now let us suppose that we wanted to add another data point
(xn+1, yn+1) to our data set. This could happen, for example, if the xi and yi were the
results of experiments. We would have to start the whole process over again and the
previous work would have been in vain. This would be somewhat irksome, so it would
make sense to try and find a method of calculating pn+1(x) which made use of pn(x).
This leads us to the topic of divided differences and the Newton form of the interpolating
polynomial.
The Newton Form

We begin by writing pn(x) as

pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) (3)
+a3(x− x0)(x− x1)(x− x2) +
. . .+ an(x− x0)(x− x1)(x− x2) . . . (x− xn−1) (4)

which is clearly of degree n and contains n+ 1 coefficients. It is called the Newton form
of the interpolating polynomial. Our task is now to choose these coefficients so that
pn(xi) = yi for i = 0, . . . , n. Before discussing this, let us remark that the advantage of
writing pn(x) in the above Newton form is now clear : if we were to add another data
point (xn+1, yn+1) the new interpolating polynomial would be

pn+1(x) = pn(x) + an+1

n∏
i=0

(x− xi).

The new term is 0 at all the original xi for i = 0, . . . , n, so pn+1 = pn at each of these
points. Hence we only have to find one new coefficient an+1 rather than having to
basically start again from the beginning as we had to do when using the Lagrange
polynomial approach. However, we still have the problem of working out how to find
the ai.

To make a start on this, let us put x = x0 in (4). Then

pn(x0) = a0 = y0.

Next, put x = x1 in (4). Then

pn(x1) = a0 + a1(x1 − x0) = y0 + a1(x1 − x0) = y1.

Hence
a1 =

y1 − y0
x1 − x0

.

Now put x = x2 in (4). Then

pn(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1) = y2.

Using the values of a0 and a1 found earlier and performing a few algebraic manipula-
tions, you should be able to show from this that

a2 =

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
.

6

It is now clear from the form of (4) that we can find aj for j = 0 . . . , n by putting
x = xj in (4) and using the expressions for the previous coefficients. The expressions
become successively more complicated and, at first sight, this process does not seem
to be an improvement on the Lagrange polynomial method. However, there is an
amazing simplification which occurs via the use of divided differences which will now
be discussed.
Divided Differences

Given the n + 1 pairs (xi, yi) for i = 0, 1, . . . , n, we define the zeroth divided differ-
ences y[xi] by

y[xi] = yi for 0 ≤ i ≤ n

and the first divided differences y[xi, xi+1] by

y[xi, xi+1] =
y[xi+1]− y[xi]
xi+1 − xi

for 0 ≤ i ≤ n− 1.

Similarly for k = 2, . . . , n we define the kth divided differences by

y[xi, xi+1, . . . , xi+k] =
y[xi+1, xi+2, . . . , xi+k]− y[xi, xi+1, . . . , xi+k−1]

xi+k − xi

for 0 ≤ i ≤ n − k. There are n + 1 zeroth divided differences, n first divided differ-
ences, n− 1 second divided differences and so on, finishing up at just one nth divided
difference. We have already found that a0 = y[x0], a1 = y[x0, x1] and a2 = y[x0, x1, x2].
It should not surprise you to learn that

ai = y[x0, x1, . . . , xi] for 0 ≤ i ≤ n

, although we will not prove this here.
The process of calculating the divided differences is easy to implement in a com-

puter program via an i loop inside a k loop. For written presentations the process is
generally set out via a divided difference table as shown in Table 2 for n = 3.

x0 y[x0]
y[x0, x1]

x1 y[x1] y[x0, x1, x2]
y[x1, x2] y[x0, x1, x2, x3]

x2 y[x2] y[x1, x2, x3]
y[x2, x3]

x3 y[x3]

Table 2: The divided difference table for four data points

The required coefficients aj are then given by the entries at the top of each column
except the first which shows the x values.

7

−2 −17
12

−1 −5 −4
4 1

0 −1 0
4

2 7

Table 3: The divided difference table for the data in Table 1

Let us now apply this method to the example considered in Table 1. The divided
difference table for this example is readily found and shown in Table 3.

Hence the required interpolating polynomial is

p3(x) = −17 + 12(x+ 2)− 4(x+ 2)(x+ 1) + (x+ 2)(x+ 1)x

which may be expanded out to give x3−x2+2x− 1, the same polynomial as we found
earlier using the Lagrange form. Now suppose we added the extra point (x4, y4) =
(1, 13). You should verify that a4 = y[x0, x1, x2, x3, x4] = −2 and hence that

p4(x) = p3(x)− 2(x+ 2)(x+ 1)x(x− 2) = . . . = −1 + 10x+ 7x2 − x3 − 2x4.

Discussion and some Applications
Thus far, we have shown how to construct the unique polynomial of degree nwhich

passes exactly through n + 1 points. Why would we want to do this? One common
circumstance would be if the yi values were the values of some function f , that is,
yi = f(xi), and we wished to estimate f at some value of x which was not one of the xi
and was less than the smallest of the xi or larger than the largest of the xi. This process
is generally called extrapolation. If the x value lies between the smallest and the largest
of the xi it is called interpolation. One often sees considerable use made of interpolation
or extrapolation in the media, either using this method or some other. Much of it is
highly questionable.

You may find this hard to believe but when I was in high school some five decades
ago nobody had calculators. To find values of functions like logarithms and trigono-
metric functions, we had books of tables. To estimate the values of these functions at
points which were not tabulated we interpolated linearly between adjacent tabulated
values. Multiplication was performed by adding logarithms (to base 10, not base e)
and division by subtraction of logarithms. The introduction of slide rules (analogue
devices which added or subtracted numbers marked on a logarithmic scale to perform
multiplications or divisions) simplified matters and replaced tables for most purposes,
but the introduction of cheap calculators revolutionised things and made life much
easier for everybody.

We will now give some applications of polynomial interpolation.
a) Rootfinding

8

A common circumstance in the practical application of mathematics to areas like
science and engineering is to find roots of an equation. You will all be familiar with
the formula for finding the roots of a quadratic equation, for example, the roots of
a polynomial of degree 2. There is a more complicated expression for the roots of a
polynomial of degree 3 and an horrendously complicated expression for the roots of
a polynomial of degree 4. It can be shown that there is no general expression for the
roots of a general polynomial of degree 5 or greater. For these, numerical methods
must be used, as they must, to find the roots of an equation like cosx − x = 0. You
may be familiar with Newton’s method for finding a root of the equation f(x) = 0. This
starts from some initial estimate x0 of the root and constructs the tangent to the curve
y = f(x) at the point (x0, f(x0)), and then finds where that tangent line cuts the x-axis.
This is taken as the next estimate x1 of the root. The process is then repeated using x1
instead of x0 to give x2, and so on. Newton’s method requires us to be able to find the
derivative of f(x). For simple cases like f(x) = cos x− x this is easy but in cases which
arise in practical applications it might be difficult or even impossible. For example, the
values of f(x) might be known only as the results of some computer program which
outputs f(x) after we have input x. Hence there is a need to devise methods which
do not require the evaluation of derivatives. One such method is inverse interpolation
which will now be outlined.

We begin by choosing two approximations, x0 and x1 to a root of the equation
f(x) = 0. For example, these could be obtained by inspecting the graph of y = f(x). We
then calculate y0 = f(x0) and y1 = f(x1). The trick is to regard x as a function of y and
to construct the interpolating polynomial of degree 1 in y which passes through (y0, x0)
and (y1, x1). This is, of course, just a straight line. Putting y = 0 in this expression gives
our next estimate x2 of the root. We now construct the interpolating polynomial of
degree 2 through (y0, x0), (y1, x1) and (y2, x2) and set y = 0 in that expression to give us
our next estimate x3 of the root, and so on. At each stage, we are adding one more data
point and the Newton form of the interpolating polynomial using divided differences
is ideal for this purpose.

To illustrate this process, let us consider the equation

cosx = x.

If we draw the graphs of y = cosx and y = x we can see that there is only one root
located at approximately x = 0.75, remembering that x is in radians, not degrees. So let
us define f(x) = cosx− x and start with x0 = 0.7 and x1 = 0.8. The process of inverse
interpolation described above then gives rise to Table 4. All the numerical results pre-
sented in this article were obtained using software which uses about 15 decimal digits
in its calculations. To save space, only the first 7 significant decimal digits are shown
in the results.

The notation used in Table 4 is that 0.4520267E − 13 means 0.4520267× 10−13. Since
we are looking for the point where f is exactly zero, it is clear that the method is con-
verging quite nicely to the true root. As with all such rootfinding methods, care is
needed in the choice of the starting values or the method may not converge at all or
converge to the wrong root if the equation has more than one root. In particular, if the

9

n xn f(xn)
0 0.7000000E + 00 +0.6484219E − 01
1 0.8000000E + 00 −0.1032933E + 00
2 0.7385654E + 00 +0.8696646E − 03
3 0.7390853E + 00 −0.3376796E − 06
4 0.7390851E + 00 −0.4520267E − 13

Table 4: The application of inverse interpolation to find the solution to the equation
f(x) = 0 where f(x) = cos x− x

function f is continuous and monotone increasing or monotone decreasing at and near
a root, the method will converge to this root provided the two initial estimates x0 and
x1 are sufficiently close to the root.
b) Numerical Integration

Another common problem which arises in practice is the calculation of definite
integrals of the form

I =

∫ b

a

f(x) dx.

For simple functions f we may be able to find the primitive function (also called the
indefinite integral) F such that F ′ = f and so find I = F (b)−F (a). In other cases, even
seemingly innocuous ones like x−1 sinx, no such primitive is available and we must
use approximate methods. One approach is to evaluate f at several points between a
and b, construct the interpolating polynomial which passes through those points and
then integrate that polynomial. We can think of this as using the polynomial as an
approximation to the original function on the interval [a, b].

One of the simplest such methods is the trapezoidal rule which approximates f on
[a, b] by a straight line drawn from (a, f(a)) to (b, f(b)). You should be able to show that
integrating this, or just simply adding the areas of a rectangle and a triangle, gives the
approximation I ≈ T where

T = 1
2
(b− a) [f(a) + f(b)] .

It should not surprise you to learn that this formula is exact if f is a polynomial
of degree 0 or 1, that is a straight line, but not in general exact for any other function.
The trapezoidal rule is commonly implemented in the form of the composite trapezoidal
rule which divides the interval [a, b] up into N sub-intervals of equal length, applies
the trapezoidal rule to each of these sub-intervals and adds up all the results. Thus, we
define xi = a + ih for i = 0, . . . , N , where h = (b − a)/N . If fi = f(xi), this gives the
approximation I ≈ TN where

TN = 1
2
h [(f0 + f1) + (f1 + f2) + . . .+ (fN−2 + fN−1) + (fN−1 + fN)] .

10

The interior points double up and we readily see that

TN = h
N−1∑
i=1

fi +
1
2
h [f0 + fN] .

The next step up is the well-known Simpson’s rule which approximates f on [a, b] by
the interpolating parabola though (a, f(a)), (c, f(c)) and (b, f(b)) where c = (a+b)/2) is
the mid-point of the interval. Integrating this parabola gives the approximation I ≈ S
where

S = 1
6
(b− a) [f(a) + 4f(c) + f(b)] .

Simpson’s rule is exact for all polynomials of degree 2 or less. Somewhat surpris-
ingly, it is also exact for all polynomials of degree 3. As with the trapezoidal rule,
Simpson’s rule is usually implemented as the composite Simpson’s rule. This divides
[a, b] into an even numberN = 2M of subintervals at points xi = a+ ih for i = 0, . . . 2M
where h = (b − a)/2M . Then applying Simpson’s rule to each group of two intervals
(x2j−2, x2j−1) and (x2j−1, x2j) for j = 0, . . .M to give I ≈ S2M where

S2M = 1
3
h

M∑
j=1

[f2j−2 + 4f2j−1 + f2j] .

Again, there is some doubling up and we readily find

S2M = 1
3
h

{
f0 + 2

M−1∑
j=1

f2j + 4
M∑
j=1

f2j−1 + f2M

}
.

There are a great number of such integration rules based upon alternative numbers
and placement of the points. For example, we need not insist that the endpoints be
included, nor that the points be equally spaced. Since this is an article on interpola-
tion not numerical integration, we will not pursue this matter any further except to
conclude with an example.

It is always a good idea to test methods or programs on things for which we already
know the correct answer in order to fix simple errors or bugs in our mathematics or
programming. We can then have some confidence in applying these techniques to
problems for which we do not know the answers. Thus we will apply the trapezoidal
rule to

I =

∫ 1

0

dx

1 + x2
= π/4 = 0.785398163397448 . . . (5)

Table 5 shows the error EN (defined as approximate value - exact value) for this
integral for various values of N together with the error multiplied by N2 when the
composite trapezoidal rule is applied to (5).

This table strongly indicates that the error decreases as N increases and that the
error is approximately proportional to 1/N2, that is, to h2. This is no accident. It can
be shown that for a wide class of well-behaved functions (specifically those for which

11

N EN N2EN

2 -0.103981634E-01 -0.415926536E-01
4 -0.260404575E-02 -0.416647320E-01
6 -0.115739678E-02 -0.416662841E-01
8 -0.651039775E-03 -0.416665456E-01

10 -0.416666171E-03 -0.416666171E-01

Table 5: The error for various values of N when the composite trapezoidal rule is ap-
plied to the integral given by equation (5).

f and its first two derivatives are continuous for a ≤ x ≤ b) the error in the compos-
ite trapezoidal rule is approximately proportional to 1/N2. For the composite Simp-
son’s rule the error is approximately proportional to 1/N4 provided f and its first four
derivatives are continuous on the interval of integration. The composite Simpson’s
rule consequently gives much better accuracy for a comparable amount of work than
does the composite trapezoidal rule. For example, using the composite Simpson’s rule
on the same integral with N = 2M = 6 gives an error of roughly −2× 10−5 compared
with approximately −1× 10−3 for the composite trapezoidal rule.
Concluding Remarks

In this article, we have shown how to construct the unique polynomial of degree n
which passes through n+1 data points and discussed two of the myriad of applications
of this procedure. Now, a polynomial of degree n may have up to n − 1 maxima and
minima and thus be quite ‘wiggly’. One consequence of this when we use polynomial
interpolation to estimate the values of a function at intermediate points is that the
polynomial may exhibit large fluctuations and hence incur large errors away from the
tabulated points. I intend to discuss ways of dealing with this difficulty in a later
article.

12

