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Partitions of Primes
Christian Aebi1 and Grant Cairns2

Problem 461 from Parabola (1980, issue 2, p. 32) asked: Partition the set Pn =
{2, 3, 5, . . . , pn} of the first n primes into two nonempty disjoint parts A,B and let a, b
be their respective products. Is |a − b| always a prime or 1? If not, find the smallest n
for which it isn’t. The answer (given in Parabola 1981, volume 17, issue 1, p. 31–32) is
no, and the smallest n is 5. Taking A = {2, 5, 7, 11} and B = {3}, one has a = 770, b = 3
and a− b = 767 = 13 · 59. To see this, the key observation is that the numbers a, b share
no common factors. It follows that the prime factors of a − b can’t divide either a or b.
So the smallest possible prime factor of a − b is pn+1. Armed with this information, it
doesn’t take long to find the required answer. And this is all done easily by hand; after
all, the problem was posed in 1980. We propose a modern variation of this problem.
Problem A Consider all possible partitions of the set Pn of the first n primes into two
disjoint parts A,B and let a, b be their respective products3. Is the smallest of the differ-
ences |a− b| always a prime or 1? If not, find the smallest n for which it isn’t.
Hints Without loss of generality we may assume that a > b. Let k denote the smallest
of the differences a− b.

1. The first few values are listed in the table below:

pn 2 3 5 7 11 13 17 19 23 29
k 1 1 1 1 13 17 1 41 157 1811

2. There are 2n partitions of Pn of the kind we are interested in. You can approach
this problem simply by running through all these partitions and find the mini-
mum difference a − b. This direct approach isn’t as silly as it may sound. Each
partition can be encoded as a string of length n of 0s and 1s; a 0 in the ith place
meaning that the ith prime is in A. You just need to run through the various
possible strings and keep track of the smallest difference. This is a nice little pro-
gramming exercise.

1Christian Aebi is a member of staff at Collège Calvin, Geneva, Switzerland 1211; chris-
tian.aebi@edu.ge.ch

2Grant Cairns is an Associate Professor in the School of Engineering and Mathematical Sciences, La
Trobe University, Melbourne, Australia 3086; G.Cairns@latrobe.edu.au

3By convention the product of the elements of the empty set equals 1.
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3. In a completely different approach, the information that you are given can be
written as equations. Consider the product of the first n primes. This is denoted
pn# and is known as the nth primorial. We have two equations: a · b = pn# and
a− b = k. Substituting for b gives a quadratic equation:

a2 − k · a− pn# = 0.

In order for this equation to have an integer solution, its discriminant must be a
square, that is, k2 + 4pn# is a square. So, starting with k = 1, you can compute
k2 +4pn#, and then increment k until you obtain a square. If it turns out that k is
prime or 1, increment n and repeat.

4. It’s nice to compare these methods (and others?) for speed, and for elegance.

5. You will need a computer! You’ll also need some software. If you are fortunate
enough to have access to Mathematica or Maple, the necessary coding will only
take a few lines. Other programs you might use are: Basic, C++, Pascal, Fortran...

6. The answer is given at the end of this article.

Further Problems
Once you start investigating this question with a computer, you will very likely

start examining related questions, observe interesting features, and wonder if they
hold for all values of n. (Beware, this kind of investigation is very addictive!). Here are
two open problems you might like to examine.
Problem B Consider the following question: for what values of pn, is there a partition
A,B of Pn for which a−b = 1? This is possible for pn = 2, 3, 5, 7, 17; find the sets A,B in
each of these cases. According to [2], Erdös conjectured that these are the only values
with min(a− b) = 1, and that this has been verified by Chris Nash up to n = 600000.
Problem C Consider the following question: for what values of pn, is there a partition
A,B of Pn for which a − b is the next prime, pn+1? This is possible for pn = 5, 7, 11, 13;
find the sets A,B in each of these cases. At present, we don’t know of any other value
of n for which this condition holds.

Arguing as in hint (iii) above, you will see that the condition in Problem B is equiv-
alent to the condition that 4pn# + 1 is a square. Similarly, the condition in Problem C
says that 4pn# + p2n+1 is a square. These conditions both have solutions for p3 = 5, as
4p3#+ 1 = 112 and 4p3#+ 72 = 132. We now show that the two conditions don’t have
a simultaneous solution for any higher prime.

Proposition 0.1 There is no prime pn > 5 for which 4pn# + 1 and 4pn# + p2n+1 are both
squares.

Proof The idea is simply that for large numbers, successive odd squares are too far
apart. Suppose that 4pn# + 1 = x2, and 4pn#+ p2n+1 is square. Then 4pn# + p2n+1 is at
least (x+ 2)2. Taking the difference we have p2n+1 ≥ 4x+ 5 > 4x. Thus

4pn#+ 1 = x2 <

(

p2n+1

4

)2

.
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By Bertrand’s postulate (check it out on Wikipedia), pn+1 < 2pn, pn+1 < 4pn−1, pn+1 <
8pn−1 and pn+1 < 16pn−1. So

4pn#+ 1 <

(

p2n+1

4

)2

< 64 · pn · pn−1 · pn−2 · pn−3,

which is false for pn > 13. In the cases pn = 7, 11, 13, the number 4pn#+ 1 isn’t square.
In the above problems we are led to look for squares close to 4pn#. What about

squares close to pn#? The factorisations of the numbers p# ± 1 have been computed
up to the 160th prime; see Bos[1]. One striking feature of these numbers is that, so far,
they are all square-free. Deciding whether a given large number is square-free or not
is a difficult question; see Pegg [4]. In general, the probability that a given arbitrary
number is square-free is only about 2/3 (actually 6/π2; see Harvester[3]). However,
the factors of p# ± 1 are all greater than p, so perhaps it isn’t so surprising that they
should often be square-free. This should also be true for numbers close to p#. Some
small exceptional examples that are good to keep in mind are: 3#+2 = 23, 3#+3 = 32,
5#− 3 = 33, 5#− 5 = 52 and 5# + 6 = 62.

Here are a few things we can prove:

Proposition 0.2 If p#+ k is a square, then k is not a multiple of q2 for any prime q ≤ p.

Proof Suppose that p# + k = a2 and k = q2b, for some prime q ≤ p and integers a, b.
Then a is divisible by q and hence a2 is divisible by q2, and thus p# is divisible by q2,
which is false.

Proposition 0.3 For each prime p,

(a) if p#+ k is a square, then k is not a square,

(b) if p > 2 and p#+ k is a square, then p#− k is not a square.

Proof (a) Suppose that p# + b2 = a2. Since p# is even, a2 and b2 have the same parity
and hence a and b have the same parity. Thus a2 − b2 = (a− b)(a+ b) ≡ 0 (mod 4). But
this is impossible as p# ≡ 2 (mod 4).

(b) Suppose once again p# + k = a2 and also that p# − k = b2. Adding both
equalities we get 2p# = a2 + b2. Looking at this in Z3 we have 0 ≡ a2 + b2 (mod 3). But
the only squares in Z3 are 0 and 1. So a and bmust both be divisible by 3. But that is in
contradiction with 2p# = a2 + b2, looked at in Z9.

Although 2# + 2 = 22, the number p# + 2 is never square for p > 2. Indeed, we
have:

Proposition 0.4 Suppose that p > 2. If p# + k is a square, then k 6≡ 2 (mod 3), k 6≡ 0
(mod 4) and k 6≡ 1 (mod 4). In particular, there is no prime p for which p#± 1 is a square.
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Proof We again use the fact that the only squares in Z3 are 0 and 1. So if p# + k = a2

and a is not a multiple of 3 then k ≡ a2 ≡ 1 (mod 3), meaning k 6≡ 2 (mod 3).
By Proposition 0.2, k isn’t a multiple of 4. If k is odd, then a is odd, say a = 1 + 2i.

Then
p# = −k + a2 = −k + (1 + 2i)2 = −k + 1 + 4i+ 4i2.

In modulo 4 this gives 2 ≡ −k + 1, that is, k ≡ 3. So k 6≡ 1 (mod 4). This completes the
proof.

Indeed, we have 3# − 2 = 22. Question: is there a p > 3 for which p# − 2 is a
square?

Indeed, we have 3#+3 = 32. Question: is there a p > 3 for which p#+3 is a square?
The answer to both these questions is no. Indeed, we have

Proposition 0.5 Suppose that p > 3. If p#+ k is a square, then modulo 22 · 32 · 5 = 180, k is
congruent to one of the following:

6, 10, 15, 19, 30, 31, 34, 39, 46, 51, 55, 66, 70, 79, 91, 94,

106, 111, 114, 115, 130, 139, 151, 154, 159, 166, 174.

Proof First note that by Proposition 0.2, k isn’t a multiple of 9 or 25. Secondly, note
that modulo 5, p# + k = a2 gives k ≡ 0 or ±1. These observations, together with the
previous proposition, give the required result.

We have 5# + 6 = 62. Question: is there a p > 5 for which p#+ 6 is a square? The
answer is no. Indeed, we have

Proposition 0.6 Suppose that p > 5. If p#+ k is a square, then modulo 22 · 32 · 5 · 7 = 1260,
k is congruent to one of the following:

15, 30, 39, 46, 51, 70, 79, 91, 106, 114, 130, 151, 154, 186, 190, 210, 211, 214, 219, 226, 231,

235, 246, 259, 274, 291, 295, 310, 319, 330, 331, 354, 366, 379, 394, 399, 406, 415, 435, 466,

471, 499, 511, 519, 526, 534, 546, 555, 571, 574, 595, 606, 610, 631, 634, 646, 651, 655, 679,

690, 694, 714, 715, 730, 735, 739, 751, 771, 786, 795, 799, 814, 826, 834, 835, 870, 879, 886,

910, 919, 939, 946, 966, 970, 991, 994, 1015, 1030, 1051, 1054, 1059, 1066, 1086, 1099, 1110,

1114, 1131, 1135, 1155, 1159, 1171, 1191, 1194, 1219, 1234, 1239, 1246, 1254, 1255.

Proof In modulo 7, p#+ k = a2 gives k ≡ 0, 1, 2 or 4. This, together with the previous
propositions, give the required result.

We have 7# + 15 = 152. Question: is there a p > 7 for which p# + 15 is a square?
Not surprisingly, the answer is again no. But this time we don’t get it by just going
to the next prime, 11, because 15 ≡ 22 (mod 11). However, we can verify directly
that 11# + 15 = 2325 is not a square, and then use the fact that 2 is not a quadratic
residue modulo 13. Of course, we can continue in this manner. From a computational
perspective, if one is searching for the smallest k such that p#+ k is square, it is much
quicker to compute

√
pn# and square its ceiling (i.e., the least integer greater than√

pn#); subtracting p# gives k. In this way one can very quickly compute k for pn up
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to n = 1000. The table below gives some values. From the table it may appear that k is
growing monotonically with p.
Problem D Does k grow monotonically with p? If not, find the smallest pn such that
the k for pn+1 is smaller than the k for pn.

Another observation we might make from the table is that there seem to be very
few prime values of k.
Problem E Find the smallest pn > 3 for which k is prime.

p p# the smallest k such that p#+ k is square
√
p#+ k

2 2 2 2
3 6 3 3
5 30 6 6
7 210 15 15
11 2310 91 49
13 30030 246 174
17 510510 715 715
19 9699690 3535 3115
23 223092870 21099 14937
29 6469693230 95995 80435
31 200560490130 175470 447840
37 7420738134810 4468006 2724104
41 304250263527210 31516774 17442772
43 13082761331670030 192339970 114379900
47 614889782588491410 212951314 784149082
53 32589158477190044730 5138843466 5708691486

Another striking feature of this table is that for p = 2, 3, 5, 7 and 17, the smallest k for
which p#+ k is square satisfies p#+ k = k2. Are there any more such primes? Notice
that the condition that the quadratic equation p# + k = k2 has an integer solution
for k, is equivalent to the condition that 1 + 4 · p# is a square; so we arrive at the same
condition as for problem B. Moreover, notice that if p#+k = k2, then subtracting 2k−1
gives p#− (k − 1) = k2 − 2k + 1 = (k − 1)2. We make two observations:

1. The square (k − 1)2 is closer to p# than the square k2.

2. Since (k − 1)2, k2 are consecutive squares and one is less than p# and the other is
greater than p#, there is no other square closer to p#.

Thus when the condition in problem B has a solution, pn# lies as close as possible to
the middle of consecutive squares. Let us record this more precisely as a proposition:

Proposition 0.7 Let l2 denote the least square greater than pn#, and let g2 denote the greatest
square less than pn#. Then there is a partition A,B of Pn for whichmin |a− b| = 1 if and only

if the average l2+g2

2
is pn#+ 1

2
.

ProofWe have already established one direction. So suppose that

l2 + g2

2
= pn#+

1

2
. (0.1)
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Let l2 = pn#+ k. From (0.1) we have g2 = pn#− k + 1. As l = g + 1 we get

pn#+ k = l2 = g2 + 2g + 1 = pn#− k + 1 + 2g + 1,

and hence g = k − 1 and l = k. Thus pn# + k = k2, and so 1 + 4 · p# is a square; this
gives us the required conclusion.
Problem F We saw in Proposition 0.3(b) that pn# can never be the average of two
squares. Explain why there cannot exist two squares whose average is pn#− 1

2
.

Solutions to Problems
Problem A

For n = 13, the smallest difference is k = 95533 = 83 · 1151.
Problem B

2− 1 = 1, 3− 2 = 1, 3 · 2− 5 = 1, 3 · 5− 2 · 7 = 1.
Problem C

2 · 5− 3 = 7, 3 · 7− 2 · 5 = 11, 5 · 11− 2 · 3 · 7 = 13.
Problem D

For pn = 197, we have k = 7591932557023107142801048373205001746619.

2 · 7 · 13− 3 · 5 · 11 = 17.
Problem E

For pn = 11779, the number k = 630 . . . 811 is prime; it has 2516 digits while for
pn+1 = 199, we have

k = 861993745812359750296203700298062752346.

Problem F
In modulo 4, we have 2pn#− 1 ≡ 3, while x2 + y2 = 0, 1 or 2.
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