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Discovering Mathematics: A Case Study

David Angell1

As a broad generalisationwemight say that research inmathematics consists of two
parts: finding out what is true, and proving that it is true. Mathematical articles (even
those written for school students) traditionally concentrate on the second of these, cov-
ering up the investigator’s tracks and offering only the final, beautifully clear path to
the proved theorem. Readers may find it of interest to see where the ideas came from
in a problem I tackled recently.

In 2008 I received an email asking a question about the value of an infinite gener-
alised continued fraction
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The dots indicate that the numbers ak and bk go on for ever. What does such an ex-
pression mean, and how do we evaluate it? We truncate the expression after each ak to
give the (finite) fractions
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and so on, which are called the convergents of the continued fraction. We then com-
pute each of these and see what happens to our results as we move along the sequence
of convergents. If they get closer and closer to some specific value then we say that the
infinite continued fraction converges to this value, if not, then the continued fraction
cannot be assigned any sensible value and we say that it diverges .

One final introductory comment: in order to save space we usually write the con-
tinued fraction (∗) as
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(with the plus signs in the denominator, not between the fractions). Don’t forget that
in this notation each fraction line is taken to include all of the expression to its right.

The most interesting continued fractions (at least for number theorists) are those in
which all the values ak and bk are positive integers: we shall assume this to be the case
throughout the present article. An important question is whether a given continued
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fraction converges to a rational or an irrational value. To get a feel for all of these ideas
you might like to calculate the first six or seven convergents of the continued fraction
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make a guess at the value of the continued fraction, and decide whether it is rational
or irrational. Hint If you can’t see any pattern in the convergents, try looking at their
squares.

The question posed by my correspondent was the following: if a1 < a2 < a3 < · · ·
and b1 < b2 < b3 < · · · , is it true that the continued fraction must necessarily converge
to an irrational value? With an open–ended question like this one we might as well
start by looking at a few examples. Given the conditions on the ak and bk, the simplest
possible example is
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Now as it happens this was a fraction I was already familiar with: it converges to the
value 1/(e − 1), which is irrational, and therefore does not answer the question. (It
shows that the kind of expression we are considering may be irrational, but not that it
must be irrational.)

So, needing a slightly more complicated example, I thought of increasing each nu-
merator by 1 and investigating the continued fraction
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How can we go about evaluating something like this? As the value of the continued
fraction is the limit of its convergents, let’s calculate a few convergents – using com-
puter assistance of course!! This gives the fractions
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We have clearly come up with a lucky guess as the answer is staring us in the face:
each numerator is 1 more or 1 less than the corresponding denominator, and so as we
proceed along the sequence the fractions will become closer and closer to 1. That is, we
guess that
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Now we would like to prove that this guess is really correct and not just the result of
an amazing coincidence. (Stranger things have happened in mathematics!) This is not
something I wish to do in the present article, but I’ll just report that I did complete the
proof by showing that the kth convergent has denominator

(k + 1)!− k! + (k − 1)!− (k − 2)! + · · · ± 1! .
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As we have shown that a continued fraction of the type under consideration may
be rational, the original question is answered in the negative. But we often find that the
solution to one question, if it’s a good question, will suggest further problems. In this
case it made me wonder what would have happened if I had increased the numerators
by more than 1. That is, I want to investigate the expression
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where s is a positive integer. Once again we start by calculating a few convergents. If
s = 2 we obtain
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and this time there is no clear pattern to the numerators and denominators. This may
not be a problem as we are not really interested in the numerators and denominators
separately but only in their quotients. And calculating a few of these as decimals,

3.0, 1.0, 1.434782609, 1.312500000, 1.337078652,

1.332761578, 1.333409692, 1.333324293, 1.333334294,

1.333333241, 1.333333341, 1.333333333, 1.333333333, . . . ,

makes our next guess pretty obvious:
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If we follow through the same ideas for s = 3, 4, 5, . . . it appears that the continued
fractions converge to the values

f(3) = 1.615384615
f(4) = 1.863013699
f(5) = 2.085828343
f(6) = 2.289804986
f(7) = 2.478914782.

In the first of these results there is just the possibility that we can see the beginning of a
repeating decimal, which can easily be converted into a rational number: we have the
very tentative guess that

f(3) = 1.615384615384615384 · · · = 1 +
615384

999999
=
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13
.

There does not seem to be much we can say about the following numbers. However,
if we are willing to risk the guess that they too are rational (and why not? the floor
won’t cave in beneath us if we are wrong), there is a well-established procedure to test
this. We expand each number in a simple continued fraction, that is, one where every
numerator is 1. Doing so by computer we find, for example, that
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1
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Now it is a known fact about simple continued fractions that large partial quotients
such as 507356 are exceedingly rare; we therefore surmise that this term is due to in-
accuracies in our calculations, that it should not really be there, and that we should
actually have a finite continued fraction
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If we continue for further values of s we find, as far as we could be bothered calculat-
ing, that there is always a very large term in the continued fraction! So we suspect that
all the expressions f(s) are rational, and in particular that f(s) is

1

1
,

4

3
,

21

13
,

136

73
,

1045

501
,

9276

4051
,

93289

37633

for s = 1, 2, 3, 4, 5, 6, 7.

Don’t forget that all of this still awaits proof, and it might be wrong! Everything we
have stated so far is merely conjecture (a polite term: as mathematicians don’t seem
to like the word ’guess’). However the evidence we have is fairly strong: we would
probably now be thinking of how we might prove all this, and maybe even find a
formula for the fractions f(s) = u(s)/v(s).

Another good way of finding things out in mathematics is to see whether perhaps
someone else may have found them out already. ’Unless we take the trouble to learn
from our predecessors, mathematics might as well be written on water.’2

A superb resource for identifying sequences of integers is the On-line Encyclopedia
of Integer Sequences. 3 If we go to this site and enter the first few terms of a sequence,
the encyclopedia will rapidly return any potential matches. Doing this with the numer-
ators u(s) = 1, 4, 21, 136, 1045, 9276, 93289 of the above fractions gave only one result,
and so it seems quite likely to be what we are looking for; doing the same thing with
the denominators also gave only one result, and by this stage we should be almost
completely convinced that we are on the right track.

’Almost completely’: after all, we have only checked the first seven terms of each
sequence against the OEIS; it could conceivably be that they differ at a later stage.
However, a bit more rummaging in the OEIS gives some formulae which, when trans-
lated into our notation, can be written

u(s) = su(s− 1) + sv(s− 1) and v(s) = u(s− 1) + sv(s− 1) .

We now have another conjecture, and although there is much work still to be done, we
can try to prove that these formulae always apply and that they give the values of f(s).

Another benefit of looking through the OEIS is that it gives copious references.
None of those for our two sequences has any relation to continued fractions, so it ap-
pears at least possible that we have discovered something which nobody else has ever
noticed!

2Thomas Körner, The Pleasures of Counting , Cambridge University Press (1996).
3http://oeis.org
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I don’t want to talk about the actual proof, except to say that it was successful, so
this is the end of the story. Perhaps it has illustrated a side of mathematics that you
may have seen little of before. I hope you will agree that mathematics is about far more
than memorising formulae; that you have to be prepared to make guesses and see if
they stand up to examination; and that, apart from anything else, working through an
investigation is simply much more fun than merely contemplating the final result!

Answer to the above question: the continued fraction converges,
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which is irrational.
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