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Solutions to Problems 1281-1290

Q1281 Prove that for any real numbers a and b there holds

1 + |a|
1 + |b| ≤ 1 + |a− b|.

ANS: If |a| ≤ |b| then the left-hand side is less than or equal to 1, whereas the right-
hand side is greater than or equal to 1. So the inequality is true. Now if |a| > |b|,
then

1 + |a|
1 + |b| = 1 +

|a| − |b|
1 + |b| ≤ 1 +

|a− b|
1 + |b| ≤ 1 + |a− b|.

Here we use the triangular inequality

||a| − |b|| ≤ |a− b| for any a, b ∈ R,

which can be proved by squaring both sides and noting that ab ≤ |a||b| or, equivalently,
−2|a||b| ≤ −2ab.

Q1282 Let a and b be two real numbers satisfying 0 ≤ a, b ≤ 1/2 and a + b > 0. Show
that

ab

(a + b)2
≤ (1− a)(1− b)

(2− a− b)2
.

ANS: Showing this inequality is true is equivalent to showing

ab(2− a− b)2 ≤ (1− a)(1− b)(a + b)2.

Some calculation reveals that this is equivalent to showing

a3 + b3 − a2b− ab2 ≤ (a− b)2.

It is easy to prove this inequality. In fact, since a + b ≤ 1 there holds

LHS = (a + b)(a− b)2 ≤ (a− b)2 = RHS.

Q1283 Generalise the result of Q1282 to the case of three numbers a, b, and c.

ANS: For all real numbers a, b, and c satisfying 0 ≤ a, b, c ≤ 1/2 and a + b + c > 0 there
holds

abc

(a + b + c)3
≤ (1− a)(1− b)(1− c)

(3− a− b− c)3
. (0.1)
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To prove this inequality we first prove that if 0 ≤ a, b, c, d ≤ 1/2 and a + b + c + d > 0
then

abcd

(a + b + c + d)4
≤ (1− a)(1− b)(1− c)(1− d)

(4− a− b− c− d)4
. (0.2)

This inequality can be proved by using the result of Q1282 successively to show
√

ab

(1− a)(1− b)
≤ a + b

2− a− b
and

√
cd

(1− c)(1− d)
≤ c + d

2− c− d
,

implying
√

abcd

(1− a)(1− b)(1− c)(1− d)
≤ (a + b)(c + d)

(2− a− b)(2− c− d)

=

(
a+b
2

) (
c+d
2

)
(
1− a+b

2

) (
1− c+d

2

) .

By using the result of Q1282 with two numbers (a + b)/2 and (c + d)/2 we deduce
√

abcd

(1− a)(1− b)(1− c)(1− d)
≤

(
a+b+c+d

2

)2

(
2− a+b

2
− c+d

2

)2

=

(
a + b + c + d

4− a− b− c− d

)2

,

implying (0.2). We now use (0.2) for four numbers a, b, c, and (a + b + c)/3 to show

abca+b+c
3

(1− a)(1− b)(1− c)
(
1− a+b+c

3

) ≤
(

a + b + c + a+b+c
3

4− a− b− c− a+b+c
3

)4

,

implying
abc

(1− a)(1− b)(1− c)
× a + b + c

3− a− b− c
≤

(
a + b + c

3− a− b− c

)4

.

By cancelling the common term on both sides we obtain (0.1).

Q1284 Let A1, B1, and C1 be three points on the sides BC, CA, and AB (respectively)
of a triangle ABC. Show that

AC1

C1B

BA1

A1C

CB1

B1A
=

sin ∠ACC1

sin ∠C1CB

sin ∠BAA1

sin ∠A1AC

sin ∠CBB1

sin ∠B1BA
.

ANS: On the one hand,
area(ACC1)
area(BCC1)

=
AC1

BC1

.
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On the other hand,
area(ACC1)
area(BCC1)

=
AC sin ∠ACC1

BC sin ∠BCC1

.

Hence
AC1

BC1

=
AC sin ∠ACC1

BC sin ∠BCC1

.

Similarly,
BA1

CA1

=
AB sin ∠BAA1

AC sin ∠A1AC
and

CB1

AB1

=
BC sin ∠CBB1

AB sin ∠B1BA
.

The result now follows from multiplying three expressions.

Q1285 Let ABC be a triangle such that sides AB and AC are fixed, but the angle
∠BAC may vary. From the exterior of ABC, construct 3 squares ABDE, ACGF , and
BCHK. Find the angle ∠BAC such that the area of the hexagon DEFGHK is maxi-
mum.

ANS: Let a = BC, b = AC, c = AB, α = ∠BAC, and β = ∠ABC. Then

area(ABC) =
1

2
bc sin α and area(AEF ) =

1

2
bc sin α,

noting that ∠EAF = π − α. Since a
sin α

= b
sin β

we also have

area(BDK) =
1

2
ac sin β =

1

2
bc sin α.

Similarly

area(CHG) =
1

2
bc sin α.

Therefore,

S = area(DEFGHK)
= area(AEDB) + area(ACGF ) + area(BCHK)

+ area(ABC) + area(AEF ) + area(BDK) + area(CHG)
= a2 + b2 + c2 + 2bc sin α

= 2(b2 + c2) + 2bc(sin α− cos α)

= 2(b2 + c2) + 2bc sin(α− π

4
).

Hence S = Smax when sin(α− π
4
) = 1, which is the case when α = π

2
+ π

4
= 3π

4
= 135◦.

Q1286 From the exterior of a triangle ABC, draw 3 equilateral triangles ABX , BCY ,
and CAZ, whose corresponding centroids are M , N , and K. Show that MNK is an
equilateral triangle.
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ANS: Let a = BC, b = AC, c = AB, α = ∠BAC, β = ∠ABC, and γ = ∠ACB. Then
AM = c/

√
3, AK = b/

√
3, and ∠MAK = α + 60◦ so that

MK2 = AM2 + AK2 − 2AM × AK × cos(∠MAK)

=
1

3

(
c2 + b2 − 2bc cos(α + 60◦)

)

=
1

3
(c2 + b2 − bc cos α +

√
3bc sin α).

On the other hand,

S = area(ABC) =
1

2
bc sin α and b2 + c2 − a2 = 2bc cos α.

Hence
MK2 =

1

6
(a2 + b2 + c2 + 4

√
3S).

Similarly,

MN2 = NK2 =
1

6
(a2 + b2 + c2 + 4

√
3S).

Therefore, MNK is an equilateral triangle.

Q1287 Let A and B be two points on the parabola y = x2. Assume that AB = 2.
Find the positions of A and B such that the area of the region formed by AB and the
parabola is maximum.

ANS: Let the coordinates of A and B be A(x1, x
2
1) and B(x2, x

2
2). Without loss of gener-

ality we can assume that x1 < x2. If A1(x1, 0) and B1(x2, 0) then

S = area(ABB1A1)−
∫ x2

x1

x2 dx

=
1

2
(x2 − x1)(x

2
1 + x2

2)−
1

3
x3

∣∣x2

x1

=
1

6
(x2 − x1)

3.

Hence S = Smax when (x2 − x1)
2 attains the maximum value. Since

4 = AB2 = (x2 − x1)
2 + (x2

2 − x2
1)

2,

there holds
(x2 − x1)

2 =
4

1 + (x1 + x2)2
.

Therefore, (x2 − x1)
2 attains the maximum value when x1 + x2 = 0, i.e. x1 = −x2. It

follows that x1 = −1 and x2 = 1.
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Q1288 Show that there are no integers x and y satisfying

x2 − 2y2 = 5. (0.3)

ANS: Assume that there exist two integers x and y satisfying (0.3). We can assume that
x, y ≥ 0. Equation (0.3) can be rewritten as

x2 − 1 = 2y2 + 4,

or
(x− 1)(x + 1) = 2(y2 + 2).

This implies that (x− 1)(x + 1) is even, and hence x− 1 and x + 1 are also even. Thus

x− 1 = 2n and x + 1 = 2n + 2 for some integer n.

Then y2 + 2 = 2n(n + 1), i.e. y is even, namely y = 2k for some integer k. It follows that

n(n + 1) = 2k2 + 1,

which is a contradiction because the LHS is even whereas the RHS is odd.

Q1289 Two chess teams play against each other in a competition. The teams have
different numbers of players, and one team has an odd number of players. Each player
has to play one game with each player of the other team. The total games played are 4
times the total players of both teams. How many players has each team?

ANS: Let x and y be the numbers of players, where x is odd. Then

xy = 4(x + y).

It follows that
y =

4x

x− 4
= 4 +

16

x− 4
.

Since x and y are integers, x− 4 must be a divisor of 16, namely,

x− 4 = ±1,±2,±4,±8, or ± 16.

Because x is odd, the only solutions are x = 3 or x = 5. But if x = 3 then y = −12 < 0.
Therefore, x = 5 and y = 20.

Q1290 Prove that from any 4 real numbers we can choose x and y satisfying

0 ≤ x− y

1 + xy
≤ 1.

ANS: The expression x−y
1+xy

reminds us of

tan β − tan α

1 + tan α tan β
= tan(β − α). (0.4)
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Now, let a ≤ b ≤ c ≤ d be any 4 real numbers. There exist α, β, γ, δ ∈ (−π/2, π/2) such
that

a = tan α, b = tan β, c = tan γ, d = tan δ.

Note that
α ≤ β ≤ γ ≤ δ ≤ α + π.

This means that β, γ and δ divide the interval [α, α + π] into 4 subintervals, namely,
[α, β], [β, γ], [γ, δ] and [δ, α + π]. At least one of these subintervals has length less than
or equal to π/4.

Assume that [α, β] is such a subinterval. Then 0 ≤ β − α ≤ π/4, implying 0 ≤
tan(β − α) ≤ 1. It follows from (0.4) that

0 ≤ b− a

1 + ab
≤ 1.

A similar argument holds if [β, γ] or [γ, δ] has length less than or equal to π/4. Finally,
if [δ, α + π] has length less than or equal to π/4, then

a− d

1 + ad
=

tan α− tan δ

1 + tan α tan δ
=

tan(α + π)− tan δ

1 + tan(α + π) tan δ
= tan(α + π − δ) ∈ [0, 1].

6


