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History of Mathematics: Conventions
Michael Deakin1

It is strange that it should be so, but it is true all the same, that many of the most de-
bated aspects of Mathematics concern matters that are really completely trivial. They
arise from questions of how we make our definitions. Such matters are referred to as
conventions. Start with a simple example:

Is 1 a prime number?

One very common definition of a prime number is that it is a natural number that
has no divisors other than itself and 1. If we use this definition then clearly 1 is prime.
Prime numbers also satisfy a congruence relation known as Wilson’s Theorem. It

goes:

(p − 1)! = kp − 1, where k is a natural number.

Take as an example the number 5. This is a prime and

(5 − 1)! = 24 = 5 × 5 − 1 (k = 5)

On the other hand, if we had used a composite number (one that does have divisors
other than itself and 1) in place of the prime p, this would not work. Try it with 6 for
example.

(6 − 1)! = 120 = 20 × 6 (exactly).

The final −1 is missing!
So what happens if we use 1 in place of p? The value given to 0! is 1, and now the

Wilson criterion is satisfied, with k = 2:

(1 − 1)! = 1 = 2 × 1 − 1.

On the definition just given then, there are two types of natural number:

the primes: 1, 2, 3, 5, 7, ..., and
the composites: 4, 6, 8, 9, 10, ... .

1Dr Michael Deakin is an Adjunct Senior Research Fellow in Mathematics and Statistics at Monash
University.
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However, most modern treatments do not take this route. There is a reason for this.
A useful theorem (known as the Fundamental Theorem of Arithmetic) states that there is
exactly one set of prime divisors for any natural number. Thus 12 = 2 × 2 × 3, and
apart from the trivial matter of listing the prime divisors in a different order, this is the
only way to decompose 12 into prime factors. However, if we allow 1 as a prime, then
the theorem is false in a trivial but annoying way:

12 = 2 × 2 × 3 = 1 × 2 × 2 × 3 = 1 × 1 × 2 × 2 × 3

There are infinitely many different prime decompositions! To avoid this annoyance,
we say that 1 is not a prime, and on this understanding, all those extra 1s are excluded.
The modern convention thus has it that a prime number is a natural number other than
1 that has no divisors other than itself and 1.
On this definition there are three types of natural numbers:

the primes: 2, 3, 5, 7, ... , the composites: 4, 6, 8, 9, 10, ... , and 1, which sits in a class all
of its own.

‘But which definition is right?’, I hear you cry! Well either! Just as long as we are
clear which definition we are using, then, as long as we stick to that one, everything will
be all right. The modern definition given just above is now preferred to the alternative
because the Fundamental Theorem of Arithmetic is seen as more important than the
slight inconvenience of having a special number 1, all in a class of its own.
Another such difference in convention applies to the answer to the question:

Is 0 a natural number?

Most modern accounts say ‘yes’, but the older convention made the natural num-
bers synonymous with the counting numbers: 1, 2, 3, .... There is a lot to be said for
this earlier convention. In particular, it makes for direct correspondence with our psy-
chological approaches to number. When we first learn to count, we most certainly start
with the numeral 1, not 0. Nonetheless, when we come to more sophisticated math-
ematical notions, it is often simpler to include 0 as a natural number: the first natural
number. We need then to list 0 among the composite numbers, along with 4, 6 and
the rest, because any natural number divides with 0. 0 = 0×n, for any natural number
n.
A somewhat related case came up when a group of us from Monash University

were invited to lead a Mathematics Day at a local high school. One of the activi-
ties involved the exploration of the properties of the Fibonacci Sequence. This goes:
1, 1, 2, 3, 5, 8, 13, 21, ..., where each number after the first two is the sum of the two num-
bers preceding it.
Thus, if Fn is the nth Fibonacci number, then Fn = Fn−1 + Fn−2. However, the

question arises again: where do we begin the count?
There are several different conventions. The most obvious way is to say: F1 =

1, F2 = 1, F3 = 2, etc. Other accounts start the count at 0, and so have F0 = 1, F1 =
1, F2 = 2, and so on. But several other conventions have also been used and it is one
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of these that is now most generally adopted. This keeps F1 = 1, F2 = 1, F3 = 2,
etc., but also includes the further term F0 = 0. The choice of convention can make a
difference (a slight difference) to the formula for Fn . If we follow this last convention,

then Fn = 1√
5

[(

1+
√

5
2

)n

−
(

1−
√

5
2

)n]

. This is known as Binet’s formula, but it can look

slightly different under some of the different conventions. (Sadly, this caused some
confusion during the Mathematics Day, with some of us using one convention and
others another!) Mathematical Induction (see Parabola, Vol. 44, No. 2) can be used to
prove the Binet result; but I leave these details to the reader.
But now let us move on to a more substantial example, one that still generates quite

a lot of discussion. What value is to be assigned to the expression 00? I wrote on this
topic in Function back in August 1981, but perhaps I can recapitulate the main points.
Here is a summary.
The question of the value of 00 is a hardy perennial. There are two conventions, and

no confusion need arise if we keep in mind which one is being employed. In one of my
own recent papers I used the convention 00 = 1, but in other contexts, I would regard
the expression as being undefined in the same sense that 0

0
is undefined.

The 00 = 1 school has some famous adherents [Leonhard Euler (1707 - 1783), Johann
Pfaff (1765 - 1825), August Möbius (1790 - 1868)], while the opposing team [Augustin-
Louis Cauchy 1789 - 1857), Guglielmo Libri (1803 - 1869) and two anonymous authors
known only as S and ’ein unbekannt’ , i.e. anon.] would seem to be rather put in
their shade. If we were to ’rank’ mathematicians, then the two superstars (Euler and
Cauchy) would outshine all the others, but Euler would probably rate above Cauchy.
Pfaff and Möbius were both excellent mathematicians (Möbius has a strip named after
him!), but Libri was only a relatively minor figure. Nobody seems to know who the
others were.
But let us now turn to the actual arguments they used.
Euler noted that a0 = 1 when a is not 0, and said it makes sense to define a0 = 1

also when a = 0.
Pfaff and Möbius employed the argument: limit of xx as x goes to zero is 1.
It is a little difficult to know quite what argument Cauchy used, but we may make

an intelligent guess. When a 6= 0, a0 = ab−b = ab

ab = 1, but when we try to use this same
argument in the case of a = 0, we end up with 0

0
which is undefined.

However, matters are not quite so simple. We can easily construct examples in
which 0

0
takes on any value whatsoever, but it is actually quite difficult to construct

examples in which 00 is not 1 . This is what S and anon. both succeeded in doing;
constructing cases in which, as x tends to 0, f(x)and g(x) both tend to zero, but f(x)g(x)

does not tend to 1. (Cauchy may be read as implying that he had such an example, but,
if so, he never divulged it!)
Anon. produced the case f(x) = x, g(x) = a+x

ln x
. Here it is not difficult to see that

g(x) → 0 as x → 0. But xg(x) = eg(x) ln x = ea+x → ea as x → 0. S had a different
example: f(x) = e−2/x, g(x) = x. Here it is easy to see that f(x) → 0 as x → 0. But here
f(x)g(x) = e−2 6= 1. (Actually, S got e−1/2. I sincerely hope this was a misprint!)
The difficulty in constructing such examples was first explained by L J Paige in
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1954, with slightly fuller accounts by later authors. Here I give the essence of Paige’s
argument. Consider the function xg(x). This covers anon.’s case exactly, and S’s may
also be recast in this form, although I omit the details. Now suppose that g(x) is a
differentiable function satisfying g(0) = 0. Then let g′(0) = k, say. It follows that for

small values of x, g(x) ≈ kx, and so xg(x) ≈ xkx = (xx)k
→ 1k = 1 as a consequence of

the Pfaff-Möbius result.
So, it would seem that the less-favoured Cauchy team won the day. Certainly they

had all the running for many years. When the project was commenced of collecting all
Euler’s works together, his discussion of 00 was placed in the very first volume, but the
twentieth-century editor felt compelled to insert a footnoted disclaimer.
However, this is not the end of the story. In 1970, a brief note appeared in the

journal The Mathematics Teacher arguing for the convention 00 = 1. The author was
the mathematics educator Herbert E Vaughan. Vaughan gave a number of examples
in which this convention proves useful. Here is one (his first, it is actually a better-
expressed rerun of one by Libri, whose own contributions to the debate are rather
tedious and muddled). (It uses the formula for the sum of a geometric progression.)

1 =
1

1 − 0
= 00 + 01 + 02 + ... = 00 + 0 + 0 + ... = 00.

The case was taken up by the influential contemporary mathematician Donald
Knuth, who holds that the binomial theorem (just used above) is too important to let
go. If we consider the competing claims of lim

x→0
x0 = 1 and lim

x→0
0x = 0 or∞, the first is

more important. He and now others also have urged that computer defaults be set to
reflect the Euler convention, rather than the Cauchy. Some years ago, I tested how far
their pleas had got. My three hand-held calculators, Maple V (Version 5.1) and Excel all
gave error messages when I asked them to evaluate 00. More modern calculators may
be different; Excel (2003) still wouldn’t calculate a value, but both Matlab (R2006b) and
Scientific Workplace (Version 5) return the value 1.
So the earlier convention is beginning to prevail.
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