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Solutions to Problems 1291-1300

Q1291 Show that there do not exist three primes x, y and z satisfying

x2 + y3 = z4.

ANS: (Correct solution by J.C. Barton, Victoria)

Assume that such primes exist. First we note that either one and only one of x, y
and z is even, or all three are even, because otherwise one side is even whereas the
other side is odd. The only even prime being 2, the case that x, y and z are all even
is not possible, because otherwise 22 + 23 = 24; contradiction. There remain 3 cases to
consider.

Case 1: only z = 2. Then x2 + y3 = 16, implying 0 ≤ y3 ≤ 16. This in turn yields
y = 2; contradiction!

Case 2: only y = 2. Then (z2 + x)(z2 − x) = 8, resulting in

z2 + x = 4 and z2 − x = 2,

or
z2 + x = 8 and z2 − x = 1,

implying z2 = 3, or z2 = 9/2; contradiction!

Case 3: only x = 2. Then y3 = (z2 + 2)(z2 − 2). Since y is a prime, y3 has 4 divisors 1,
y, y2 and y3, and we have either

z2 − 2 = y and z2 + 2 = y2,

or
z2 − 2 = 1 and z2 + 2 = y3.

The first possibility results in y2−y = 4 and the second results in y3−1 = 4. Both cases
lead to a contradiction.

Therefore, there do not exist primes satisfying the given equation.

Q1292 Prove that for all a, b, c, and d satisfying 0 ≤ a, b, c, d ≤ 1, there holds

a

b + c + d + 1
+

b

c + d + a + 1
+

c

d + a + b + 1
+

d

a + b + c + 1
+(1 − a)(1 − b)(1 − c)(1 − d) ≤ 1.

ANS:Without loss of generality we can assume that

0 ≤ a ≤ b ≤ c ≤ d ≤ 1
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. First note that by Cauchy’s inequality there holds

(a + b + c + 1)(1 − a)(1 − b)(1 − c)

≤
(

(a + b + c + 1) + (1 − a) + (1 − b) + (1 − c)

4

)4

= 1,

so that

(1 − a)(1 − b)(1 − c) ≤ 1

a + b + c + 1
,

or

(1 − a)(1 − b)(1 − c)(1 − d) ≤ 1 − d

a + b + c + 1
.

Now consider the left-hand side of the inequality to be proved. Noting that a, b, c ≤ d
we have

LHS ≤ a

a + b + c + 1
+

b

a + b + c + 1
+

c

a + b + c + 1
+

d

a + b + c + 1

+ (1 − a)(1 − b)(1 − c)(1 − d)

≤ a + b + c + d

a + b + c + 1
+

1 − d

a + b + c + 1

= 1 = RHS.

Q1293 Suppose that u = cot(π/8) and v = cosec(π/8). Prove that u satisfies a quadratic
and v a quartic equation with integral coefficients and with leading coefficients 1.

ANS: (Correct solution by J.C. Barton, Victoria)

Using the double-angle formula for tan 2xwe have

1 = tan
π

4
=

2 tan π
8

1 − tan2 π
8

,

so that
2/u

1 − 1/u2
= 1,

or
2u

u2 − 1
= 1,

implying u2 − 2u − 1 = 0. Meanwhile, the double-angle formula for sin 2x gives

1√
2

= sin
π

4
= 2 sin

π

8
cos

π

8
,

so that, by squaring both sides and using cos2 x = 1 − sin2 x,

4

v2
(1 − 1

v2
) =

1

2
.
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Multiplying both sides by 2v4 gives

8(v2 − 1) = v4,

or v4 − 8v2 + 8 = 0.

Q1294 Let a and b be two sides of a triangle, and α and β be two angles opposite these
sides, respectively. Prove that

a + b

a − b
=

tan α+β

2

tan α−β

2

.

ANS: (Correct solution by J.C. Barton, Victoria)

By using the law of sines
a

sin α
=

b

sin β
= 2R

where R is the radius of the circumscribed circle, we have

a + b

a − b
=

2R(sin α + sin β)

2R(sin α − sin β)
=

sin α + sin β

sin α − sin β
.

By using the addition formulas for sin(x + y) and cos(x + y)we can prove that

sin α + sin β = 2 sin
α + β

2
cos

α − β

2

sin α − sin β = 2 cos
α + β

2
sin

α − β

2
.

Therefore,
a + b

a − b
=

sin α+β

2

cos α+β

2

cos α−β

2

sin α−β

2

=
tan α+β

2

tan α−β

2

.

Q1295 Assume that the following information about a triangle is known: the radius
R of the circumscribed circle, the length c of one side, and the ratio a/b of the lengths
of the other two sides. Determine all three sides and angles of this triangle.

ANS: First note that c ≤ 2R. Let α, β and γ be the angles opposite sides a, b and c,
respectively. Then by using the law of sines we have

sin γ =
c

2R
.

If c < 2R, there are two possible values for γ. If c = 2Rwe have γ = π/2.

Having found γ we obtain (α + β)/2 by

α + β

2
=

180◦ − γ

2
.
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It follows from Q1294 that

tan
α − β

2
=

a − b

a + b
tan

α + β

2
=

(a/b) − 1

(a/b) + 1
tan

α + β

2
,

so that α−β

2
is determined. Hence α and β can be obtained from

α =
α + β

2
+

α − β

2
and β =

α + β

2
− α − β

2
.

Finally, the law of sines gives

a =
c sin α

sin γ
and b =

c sin β

sin γ
.

Q1296 (Suggested by Dr. Panagiote Ligouras, Leonardo da Vinci High School, Noci,
Bari, Italy)

Let a, b and c be the sides, and ma, mb and mc be the medians of a triangle ABC.
Prove that

m2

a =
1

4
(2b2 + 2c2 − a2), m2

b =
1

4
(2c2 + 2a2 − b2), m2

c =
1

4
(2a2 + 2b2 − c2).

ANS: (Correct solution by J.C. Barton, Victoria)

LetM be the midpoint of BC. Then by using the cosine rule for two triangles AMC
and AMB we obtain

b2 = m2

a +
1

4
a2 − ama cos ∠AMC

c2 = m2

a +
1

4
a2 − ama cos ∠AMB.

Since cos ∠AMB = − cos ∠AMC, by adding the above equations we obtain the desired
formula for ma. Similar arguments hold for mb andmc.

Q1297 (Suggested by Dr. Panagiote Ligouras, Leonardo da Vinci High School, Noci,
Bari, Italy)

Let a, b and c be the sides, and ma, mb and mc be the medians of a triangle ABC.
Prove or disprove that

27(a2b + b2c + c2a)(ab2 + bc2 + ca2) ≤ 64(m4

a + m4

b + m4

c)(m
2

a + m2

b + m2

c).

ANS: First we note from Q1296 that

m2

a + m2

b + m2

c =
3

4
(a2 + b2 + c2) and m4

a + m4

b + m4

c =
9

16
(a4 + b4 + c4). (0.1)
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Now by using the Cauchy-Schwarz inequality we have

a2b + b2c + c2a ≤
√

a4 + b4 + c4
√

b2 + c2 + a2, (0.2)

and
ab2 + bc2 + ca2 ≤

√
a2 + b2 + c2

√
b4 + c4 + a4. (0.3)

Combining (0.1)–(0.3) we obtain

(a2b + b2c + c2a)(ab2 + bc2 + ca2) ≤ (a4 + b4 + c4)(a2 + b2 + c2)

=
16

9
(m4

a + m4
b + m4

c)
4

3
(m2

a + m2
b + m2

c),

yielding the desired inequality.

Q1298 Find all functions f : R → R satisfying

f(a + b) + f(b + c) + f(c + a) ≥ 3f(a + 2b + 3c) for all a, b, c ∈ R.

ANS: Consider an arbitrary x ∈ R and put a = x and b = c = 0 in the given inequality.
Then 2f(x) + f(0) ≥ 3f(x), implying f(x) ≤ f(0). Put a = b = x/2 and c = −x/2. Then
f(x) + 2f(0) ≥ 3f(0), implying f(x) ≥ f(0). Hence f(x) = f(0) for all x ∈ R, i.e. f is a
constant function. Obviously, any constant function satisfies the given inequality.

Editor’s note: Here we have shown that if f satisfies the given inequality then f is
constant. This means we have found ALL functions f .

Q1299 Let f be a function satisfying each of the following

1. For all real numbers x and y, there holds

f(x + y) + f(x − y) = 2f(x)f(y). (0.4)

2. There exists a real number a such that f(a) = −1.

Prove that f is periodic.

ANS: (Correct solution by J.C. Barton, Victoria)

By putting x = a and y = 0 in (0.4) we deduce f(0) = 1. By letting x = y = a/2 in
(0.4) we deduce

f(a) + 1 = 2
(

f(
a

2
)
)2

,

implying f(a/2) = 0. Hence, for any x ∈ R,

f(x +
a

2
) + f(x − a

2
) = 2f(x)f(a/2) = 0,

so that
f(x +

a

2
) = −f(x − a

2
) for all x ∈ R.

Using this identity twice yields

f(x + 2a) = −f(x + a) = f(x) for all x ∈ R.

Therefore, f is periodic with period 2a.
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Q1300 Find all polynomials p(x) satisfying

(x − 16)p(2x) = 16(x − 1)p(x) for all x ∈ R. (0.5)

ANS: (Correct solution by J.C. Barton, Victoria)

Let p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 where an 6= 0. By equating the leading
terms on both sides of (0.5) we obtain 2nan = 16an. Since an 6= 0 it follows that n = 4.
Hence p(x) = a4x

4 + a3x
3 + a2x

2 + a1x + a0. There are two ways to find p.

Method 1: By substituting p(x) = a4x
4+a3x

3+a2x
2+a1x+a0 into (0.5) and equating

the coefficients we obtain the following relations in the coefficients

8a3 − 256a4 = 16a3 − 16a4

4a2 − 128a3 = 16a2 − 16a3

2a1 − 64a2 = 16a1 − 16a2

a0 − 32a1 = 16a0 − 16a1.

Let a0 = t be an arbitrary real number. Then

a1 = −15

16
t, a2 =

35

128
t, a3 = − 15

512
t, a4 =

15

14336
t.

These coefficients define all possible polynomials

p(x) = t

(

15

14336
x4 − 15

512
x3 +

35

128
x2 − 15

16
x + 1

)

,

where t is any real number.

Method 2: By substituting successively x = 1 and x = 16 into (0.5) we have p(2) = 0
and p(16) = 0. Next substituting x = 2 gives p(4) = 0. Finally, substituting x = 4 gives
p(8) = 0. Therefore

p(x) = a(x − 2)(x − 4)(x − 8)(x − 16),

where a is any real number.
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