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The Complex Roots of a Quadratic Equation:

A Visualization
Carmen Q Artino1

Introduction
Visualization is a powerful tool in any teacher’s bag of tricks, perhaps even more

so for the mathematics teacher who must often visually present abstract concepts. At
times, though, we may be at a loss as to how to visually represent a particular notion.
For example, when the roots of a quadratic equation are real numbers, the graph of
the corresponding quadratic function intersects the horizontal axis in two points (or
just one point if the root is of multiplicity 2). See Figure 1. In this case, the student
can easily see the relationship between the roots and the graph of the function along
with other concepts such as the symmetry of the roots about the axis of the parabola.
However when the roots are complex the graph does not intersect the x-axis, as shown
in Figure 2, so how do we ‘see’ them in this case?

Figure 1: Real roots
Figure 2: Complex roots. Where are they?

Over the past twenty-five or thirty years several methods for visualizing the com-
plex roots of a quadratic equation have appeared in the literature (see the references for
a sample of articles). With the advent of technological tools for graphing, these meth-
ods deserve to be more widely known especially among secondary school teachers.
My intent here is to demonstrate several of these methods. Before doing so, however, I
want to present some preliminaries regarding quadratic equations, complex numbers,
and plotting in space.

1Carmen Artino is a Professor in Mathematics at The College of Saint Rose, Albany, New York, USA.
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Preliminaries
1. Our primary concern will be the quadratic equation,

az2 + bz + c = 0

and the corresponding quadratic function, p(z) = az2+bz+c, in which we take a, b, and
c to be real numbers with a > 0. There is no loss of generality in this last assumption;
all our parabolas will be drawn concave upward. Wewill also use the quadratic formula,

z =
−b±

√
b2 − 4ac

2a
= − b

2a
±

√
b2 − 4ac

2a
.

Lastly we note that the abscissa of the vertex of the parabola is − b

2a
and that its axis of

symmetry is x = − b

2a
.

2. A complex number z may be written as z = x+iywhere x and y are real numbers
and i =

√
−1. The number x is called the real part of z and y is its imaginary part. We will

presume a familiarity with the basic arithmetic of complex numbers. Because we can
associate the complex number z = x + iy with the ordered pair (x, y), we may depict
the complex numbers as points in the Cartesian plane. When depicted in this way, the
x-axis is called the real axis, the y-axis is called the imaginary axis, and the plane is
referred to as the complex plane, Figure 3.

The conjugate of a complex number is the number z = x− iy. This is important be-
cause we know that for a polynomial with real coefficients, its zeros come in conjugate
pairs. This is a rather easy statement to prove using the facts zw = z ·w, z + w = z+w,
z = z, and the fact that z is real iff z = z. Graphically, z is the reflection of z in the real
axis. The absolute value ormodulus of a complex number z = x+ iy is defined to be

the real number |z| =
√

x2 + y2 . It is a generalization of the notion of absolute value

for real numbers because if z is real, then y = 0 so |z| =
√
x2 + 02 =

√
x2 = |x|. Geomet-

rically, the modulus of z is the distance between z and the origin in the complex plane.
It is always true that |z| ≥ 0. Figure 4 shows the modulus and conjugate of z.
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Figure 3: The complex plane

z = x - iy

z = x + iy
|z|

Figure 4: Modulus and conjugate

3. To plot the graph of a function w = p(z) we need ordered pairs (z, w) and when
z = x+iy and w = u+iv are complex numbers, these ordered pairs give rise to ordered
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4-tuples (x, y, u, v) of real numbers. Such a graph would have to be drawn using four
mutually perpendicular axes; that is, in Cartesian 4-dimensional space. Since this is
not possible, we shall resort to a method that requires only ordered triples (x, y, u) of
real numbers. Thus, we will be plotting surfaces in three-dimensional space using three
mutually perpendicular lines as axes, labeled x, y, and u as shown in Figure 5. The
x and y-axes determine the complex plane as we indicated before and, for the first
method we shall present, the modulus of a complex number will be plotted along the
u-axis.

For the first two methods, we assume that z is complex and for third method, we
will take z to be real.

x y

u

Figure 5: 3D Axes

Method 1. The Modulus Surface
The graph of the modulus of p(z) is admirably suited to depicting its zeros whether

they are real or complex; moreover, this graph is reasonably easy to drawwith the right
technological tools. Since the modulus of p(z), u = |p(z)|, is a real number, its graph is
just a surface in space called the modulus surface of p(z). We note that since |p(z)| ≥ 0,
the graph always lies on or above the complex plane. In addition, |p(z)| = 0 if and only
if p(z) = 0 so the graph is incident with the plane only at those values of z for which
p(z) = 0; that is, only at the zeros of w = p(z). Figures 6 and 7 show the modulus
surfaces of p(z) = z2 − 4z + 3 = (z − 1)(z − 3) and p(z) = z2 − 4z + 8. The first has real
roots at z = 1, 3 while the second has complex roots at z = 2 + 2i and z = 2 − 2i. In
each case, the surface touches the xy-plane at exactly these points as is easily seen.

One of the nice features about the modulus surface is that it can be used with
quadratic polynomials whose coefficients are not necessarily real; that is, it works in all
cases. If you have the capability of graphing such surfaces, try plotting the modulus
surface of a quadratic with a repeated root such as z2 − 4z + 4 or one with complex
coefficients such as z2 − 2iz + 1. Another nice feature of the modulus surface is that
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Figure 6: Modulus surface of
p(z) = z2 − 4z + 3.
Real roots at 1 and 3.
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Figure 7: Modulus surface of
p(z) = z2 − 4z + 8.
Complex roots at 2 + 2i and 2− 2i.

it also works to exhibit the roots of polynomials of higher degree. Try, for example,
plotting various cubic and quartic polynomials.

Method 2. The Real and Imaginary Parts
As mentioned in the Introduction, when the roots of a quadratic equation ax2 +

bx + c = 0 are complex, the corresponding quadratic function p(x) has a graph similar
to that in Figure 2. But this figure only presents a narrow view of the entire graph.
This occurs because we restrict the values of x to the real numbers so that p(x) will
be real also. But p(x) is real valued when x is restricted to other values as well. An
examination of all the values of the independent variable for which p is real will give
us the bigger picture and a graph showing the complex roots.

We split p(z) into its real and imaginary parts and require p(z) to be real. Each of
the two parts will be quadratic and plotted as curves (parabolas) in space rather than
curves in a plane. We will also show a connection to the previous method. We begin
with a some algebra.

Let u = p(z) = az2 + bz + c where z = x + iy. After substituting x + iy for z and
gathering real and imaginary parts, we obtain

p(z) = (ax2 − ay2 + bx+ c) + (2axy + by)i

Requiring p(z) to be real means that we must have

2axy + by = y(2ax+ b) = 0

. Therefore, y = 0 or x = − b

2a
. Hence p(z) is real when z is on the line y = 0, u = 0 or on

the line x = − b

2a
, u = 0; both lines lie in the complex plane. When z is restricted to the

line y = 0, u = 0; that is, when restricted to the x-axis, z = x and p(z)may be written as
p(x) = ax2+bx+c. When the zeros of p(x) are complex, its graph does not intersect the
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x-axis. We refer to this part as the real part of p(z). See Figure 8 for an example. When
z is restricted to the line, x = − b

2a
, u = 0; that is the line z = − b

2a
+ yi is parallel to the

y-axis, then p(z) becomes

p(− b

2a
+ yi) =

(

a
b2

4a2
− ay2 − b2

2a
+ c

)

+

(

2a
−b

2a
y + by

)

i

or

p(− b

2a
+ yi) = −ay2 +

4ac− b2

4a

which we shall denote by q(y). That is,

q(y) = −ay2 +
4ac− b2

4a
.

We will call q(y) the imaginary part of p(z). In this case, the graph of q does intersect the
line z = − b

2a
+yi and the zeros of p(z) appear at these points of intersection. See Figure

9. Note that both parabolas share a common vertex,
(

− b

2a
, 4ac−b

2

4a

)

as shown in Figure

10 (and Figure 11). The points of intersection of q(y) with the complex plane in these
two figures are precisely at the (complex) zeros of p(z).
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Figure 8: Real branch of
p(z) = 3(z2 − 4z + 8)
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Figure 9: Imaginary branch of
p(z) = 3(z2 − 4z + 8)

Note the relationship between this method and that of the modulus surface. These
graphs are just traces of themodulus surface. The real part of p(z) is obtained by slicing
it with the plane y = 0. Can you determine how to obtain the imaginary part of p(z)?
See Figures 12, 13, and 14.

Method 3. The Common Case
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Figure 10: The two branches
of 3(z2 − 4z + 8)
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Figure 11: Another view; zeros at 2± 2i
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Figure 12: Traces
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Figure 13: An inside view

This method is called the common case because it is the one we might commonly
meet in a classroom situation—a quadratic equation with nonreal roots whose cor-
responding function has a graph like that shown in Figure 2. Here, we treat z as
a real number and write our quadratic as p(x) = ax2 + bx + c with a > 0. Let

r1 = − b

2a
−

√
b2 − 4ac

2a
and r2 = − b

2a
+

√
b2 − 4ac

2a
. Since p

(

− b

2a

)

=
4ac− b2

4a
, the ver-

tex of the parabola is at
(

− b

2a
,
4ac− b2

4a

)

.

If we let α = − b

2a
and β =

√
b2 − 4ac

2a
, then

r1 = α− β, r2 = α + β

and the vertex is at (α,−aβ2). Note that the zeros of p(x), when real, lie on a chord
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Figure 14: A view from beneath the surface

parallel to the x-axis that is aβ2 units away from its vertex. See Figure 15.
When the zeros of p(x) are complex numbers, write

r1 = − b

2a
− i

√
4ac− b2

2a
,

r2 = − b

2a
+ i

√
4ac− b2

2a
.

How might we ‘see’ these zeros graphically? Obviously, we cannot but we can locate

two points on the graph of p(x) that are associated with them. As before, let α = − b

2a

but take β′ =

√
4ac− b2

2a
. Then p(α) = aβ′2 so that the vertex of the parabola is now

at (α, aβ′2) . Draw a chord 2β′ units long parallel to the x-axis and 2aβ′2 units above
it. This chord will intersect the parabola in two points, s1 and s2. It is easy to see that
s1 = (α − β′, 2aβ′2) while s2 = (α + β′, 2aβ′2). Thus, the first coordinates of s1 and s2 are
respectively the difference and sum of the real and imaginary parts of the zeros of p(x) and are
the two points we seek. See Figure 16.

There are several ways to easily locate these points.
(a) The Auxiliary Polynomial
This polynomial is defined by the equation,

q(x) = −p(x) + 2p

(

− b

2a

)

.

q(x) and p(x) share the same vertex but q(x) has opposite concavity. Because of this, if
p(x) has complex zeros, q(x) will have real zeros (and vice versa). Now plot p(x) and
q(x) on the same axes, then draw two lines perpendicular to the x-axis passing through
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Figure 16: The complex case

the zeros of q(x). These lines will intersect p(x) at the points s1 and s2. To verify this

statement, note that the zeros of q(x) are − b

2a
±

√
4ac− b2

2a
= α± β′. It is then easy to

see that q(α ± β′) = 0 and p(α ± β′) = 2aβ′2. Figure 17 shows p(x) and its auxiliary
polynomial together with the vertical lines mentioned above.

Example: p(x) = x2 − 6x+ 13
In this case, q(x) = −x2 + 6x − 5 = −(x − 1)(x − 5) so the zeros of q(x) are r1 = 1

and r2 = 5. Note also that α = 3 and β′ = 2. We therefore determine the zeros of
p(x) to be α ± β′i = 3 ± 2i. These are easily verified using the quadratic formula.
If we draw the graphs of p(x) and q(x) on the same coordinate axes as previously
described, wemay easily locate the points on p(x) associated with these complex zeros.
In this case, they are (1, 8) and (5, 8). Thus α − β′ = 1 and α + β′ = 5. Hence, we

have Real-Part-of-the-zeros =
(α + β′) + (α− β′)

2
= 3 and Imaginary-Part-of-the-zeros

=
(α + β′)− (α− β′)

2
= 2 so the zeros are at 3± 2i as obtained above. See Figure 18.

(b) The Tangent Line Method
If p(x) = ax2 + bx+ c, then its derivative is p′(x) = 2ax+ b. Since the coordinates of

s2, say, are (α+β′, 2aβ′2), we note that p′(α+β′) = 2a(α+β′)+b = 2a

√
4ac− b2

2a
= 2aβ′.

Thus the slope of the tangent line to the parabola at s2 is 2aβ
′ and the line is easily seen

to be
y2 = 2aβ′x− 2aαβ′.

If x = α, then y = 0 so this line contains the point (α, 0); note that α is the abscissa of
the vertex of p(x) so that the point (α, 0) lies on the axis of symmetry of p(x) and below
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Figure 17: The auxiliarypolynomial
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Figure 18: Locating the complex
zeros of
p(x) = x2 − 6x+ 13

its vertex. In the same way, the line,

y1 = −2aβ′x+ 2aαβ′

is tangent to the parabola at the point s1 and also contains the point (α, 0). Thus, if
we place a straightedge on the point (α, 0) and parallel to the y-axis, then rotate it
clockwise until it is tangent to the parabola, we arrive at the point s2. Rotating the
straightedge counterclockwise will locate the point s1. See Figure 19.

Example: p(x) = x2 − 6x+ 13
We saw previously that the zeros of p(x) are 3 ± 2i. Here we have p′(x) = 2x − 6,

α = 3, and β′ = 2. Thus p′(α+β′) = 4 so that the line y2 = 4x− 12. In the same manner,
the line y1 = −4x+ 12.

Interconnections
In an attempt to tie these three methods together, we present several plots of a

quadratic polynomial using different points of view. To begin with, Figure 20 shows a
graph of a quadratic polynomial with complex zeros.

Now suppose that this is a 3D-plot and that our perspective is that the horizontal
axis in this figure is the x-axis while the vertical axis is the u-axis and imagine that the
y-axis is perpendicular to the plane of the paper. If we then rotate the graph, we get a
view of the plot as shown in Figure 21 and we see that our graph is the graph of the
real part of the quadratic as described in Method 2.

Figure 22 shows the plot in Figure 20 with its auxiliary polynomial added and Fig-
ure 23 shows that same plot rotated in space giving us a viewpoint like that in Figure
21.

In Figure 24, we have added the imaginary part of the quadratic as described in the
second method. Note that the auxiliary polynomial and the imaginary part intersect
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Figure 19: Locating the complex zeros of p(x) = x2 − 6x+ 13, tangent line method

the complex plane in four points. These four points lie on a circle whose center and
radius are easily determined. Using the notation above, this circle is |z − α| = |β′|.
Figure 25 shows this circle. Lastly, Figure 26 shows these three parabolas together with
the modulus surface of p(z).
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complex zeros
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Figure 21: 3D view.
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Figure 22: Quadratic polynomial
and auxiliary polynomial
with complex zeros
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Figure 23: 3D view.
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