Parabola Volume 45, Issue 3 (2009)

Problems 1311–1320

Q1311 Prove that $\tan 75^\circ - \tan 60^\circ = 2$ using purely geometrical arguments.

Q1312 Three right-angled triangles have integral side lengths. The side lengths of the first and second triangles are, respectively, 5, 12, 13, and 8, 15, 17 (units). Given that the length of the hypotenuse of the third triangle is 221 units, find the other two lengths.

Q1313 This year (2009), November 13th falls on Friday. Explain why every year must have at least one Friday the thirteenth. What is the largest number of these days that can fall in a year?

Q1314 Prove that in an acute-angled triangle *ABC* there holds

$$\tan^n A + \tan^n B + \tan^n C \ge 3 + \frac{3n}{2},$$

where n = 0, 1, 2, 3, ...

Q1315 Let *a* and *b* be two integers. Prove that 2a + 3b is divisible by 17 if and only if 9a + 5b is divisible by 17.

Q1316 The area *S* and the angle γ opposite side *c* of a triangle are given. Determine the other two sides *a* and *b* such that *c* is minimum.

Q1317 Given a_1 , a_2 , a_3 , a_4 , a_5 satisfying

$$a_1^2 + \dots + a_5^2 = 1,$$

prove that

$$\min_{1 \le i \ne j \le 5} (a_i - a_j)^2 \le \frac{1}{10}.$$

Q1318 Find all primes *a*, *b*, and *c* satisfying

$$abc < ab + bc + ca$$
.

Q1319 Find all functions *f* satisfying

$$f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}.$$

Q1320 Find all functions *f* satisfying

$$f\left(\frac{x+y}{2}\right) = \frac{2f(x)f(y)}{f(x)+f(y)}.$$