Parabola Volume 45, Issue 3 (2009)

Solutions to Problems 1301–1310

Q1301 (Suggested by J. Guest, Victoria) Solve the quartic

$$
(x+1)(x+5)(x-3)(x-7) = -135.
$$

ANS: (suggested by David Shaw, Geelong, Victoria)

Rearrange the equation as

$$
(x^2 - 2x - 3)(x^2 - 2x - 35) = -135.
$$

By setting $z = x^2 - 2x$, the above equation becomes

$$
z^2 - 38z + 240 = 0,
$$

which has solutions $z_1 = 30$ and $z_2 = 8$. Solving the two equations $x^2 - 2x = 30$ and $x^2 - 2x = 8$ results in 4 solutions to the quartic equation

$$
x_1 = 1 + \sqrt{31}
$$
, $x_2 = 1 - \sqrt{31}$, $x_3 = 4$, and $x_4 = -2$.

Q1302 Let α , β and γ be the angles of one triangle, and α' , β' and γ' be the angles of another triangle. Assume that $\alpha = \alpha'$, $\beta \ge \gamma$ and $\beta' \ge \gamma'$. Prove that

$$
\sin \alpha + \sin \beta + \sin \gamma \ge \sin \alpha' + \sin \beta' + \sin \gamma'
$$

if and only if

 $\beta - \gamma \leq \beta' - \gamma'.$

ANS: Assume that

$$
\sin\alpha+\sin\beta+\sin\gamma\geq \sin\alpha'+\sin\beta'+\sin\gamma'.
$$

Then since $\alpha = \alpha'$ we have

$$
\sin \beta + \sin \gamma \ge \sin \beta' + \sin \gamma'.
$$

By using the addition formula for sines and cosines we can prove that

$$
\sin \beta + \sin \gamma = 2 \sin \frac{\beta + \gamma}{2} \cos \frac{\beta - \gamma}{2}
$$

and

$$
\sin \beta' + \sin \gamma' = 2 \sin \frac{\beta' + \gamma'}{2} \cos \frac{\beta' - \gamma'}{2}.
$$

Noting that the sum of the angles in a triangle is 180◦ we deduce

$$
\cos\frac{\alpha}{2}\cos\frac{\beta-\gamma}{2} \ge \cos\frac{\alpha'}{2}\cos\frac{\beta'-\gamma'}{2}.
$$

or

$$
\cos\frac{\beta-\gamma}{2}\geq \cos\frac{\beta'-\gamma'}{2}.
$$

The fact that $0 \leq \frac{\beta - \gamma}{2}, \frac{\beta' - \gamma'}{2} \leq 90^{\circ}$ gives $\frac{\beta - \gamma}{2} \leq \frac{\beta' - \gamma'}{2}$ $\frac{-\gamma}{2}$, therefore $\beta - \gamma \leq \beta' - \gamma'$. By reversing the argument, we can prove that if $\beta - \gamma \leq \beta' - \gamma'$ then $\sin \alpha + \sin \beta + \sin \gamma \geq \sin \alpha' + \sin \beta' + \sin \gamma'.$

Q1303 (Suggested by Dr. Panagiote Ligouras, Leonardo da Vinci High School, Noci, Bari, Italy. Edited.)

Let m_a , m_b , m_c be the medians, h_a , h_b , h_c the heights, l_a , l_b , l_c the bisectors and R the circumradius of a scalene triangle ABC. Prove that

$$
\frac{l_a^3(m_a - h_a)\sqrt{m_a h_a}}{h_a(l_a^2 - h_a^2)} + \frac{l_b^3(m_b - h_b)\sqrt{m_b h_b}}{h_b(l_b^2 - h_b^2)} + \frac{l_c^3(m_c - h_c)\sqrt{m_c h_c}}{h_c(l_c^2 - h_c^2)} < 6R^2.
$$

ANS: Since $\triangle ABC$ is scalene, $h_a < l_a$, $h_b < l_b$ and $h_c < l_c$. Hence

$$
\frac{l_a^3(m_a - h_a)\sqrt{m_a h_a}}{h_a(l_a^2 - h_a^2)} + \frac{l_b^3(m_b - h_b)\sqrt{m_b h_b}}{h_b(l_b^2 - h_b^2)} + \frac{l_c^3(m_c - h_c)\sqrt{m_c h_c}}{h_c(l_c^2 - h_c^2)} \n< \frac{l_a^4(m_a - h_a)\sqrt{m_a h_a}}{h_a^2(l_a^2 - h_a^2)} + \frac{l_b^4(m_b - h_b)\sqrt{m_b h_b}}{h_b^2(l_b^2 - h_b^2)} + \frac{l_c^4(m_c - h_c)\sqrt{m_c h_c}}{h_c^2(l_c^2 - h_c^2)}.
$$

By using $\sqrt{\alpha\beta} \leq (\alpha + \beta)/2$ we deduce

$$
\frac{l_a^3(m_a - h_a)\sqrt{m_a h_a}}{h_a (l_a^2 - h_a^2)} + \frac{l_b^3(m_b - h_b)\sqrt{m_b h_b}}{h_b (l_b^2 - h_b^2)} + \frac{l_c^3(m_c - h_c)\sqrt{m_c h_c}}{h_c (l_c^2 - h_c^2)}
$$
\n
$$
< \frac{1}{2} \frac{l_a^4(m_a - h_a)(m_a + h_a)}{h_a^2 (l_a^2 - h_a^2)} + \frac{1}{2} \frac{l_b^4(m_b - h_b)(m_b + h_b)}{h_b^2 (l_b^2 - h_b^2)} + \frac{1}{2} \frac{l_c^4(m_c - h_c)(m_c + h_c)}{h_c^2 (l_c^2 - h_c^2)}
$$
\n
$$
= \frac{1}{2} \frac{l_a^4(m_a^2 - h_a^2)}{h_a^2 (l_a^2 - h_a^2)} + \frac{1}{2} \frac{l_b^4(m_b^2 - h_b^2)}{h_b^2 (l_b^2 - h_b^2)} + \frac{1}{2} \frac{l_c^4(m_c^2 - h_c^2)}{h_c^2 (l_c^2 - h_c^2)}.
$$

If we can prove that

$$
\frac{l_a^4(m_a^2-h_a^2)}{h_a^2(l_a^2-h_a^2)}=\frac{l_b^4(m_b^2-h_b^2)}{h_b^2(l_b^2-h_b^2)}=\frac{l_c^4(m_c^2-h_c^2)}{h_c^2(l_c^2-h_c^2)}=4R^2,
$$

then the required inequality is proved.

It suffices to prove

$$
\frac{l_a^4(m_a^2 - h_a^2)}{h_a^2(l_a^2 - h_a^2)} = 4R^2.
$$

Let H, L and M be the feet of h_a , l_a , and m_a on BC. The line AL cuts the circumcircle again at N. Since $\triangle ABN$ is similar to $\triangle ALC$ (having $\angle BAN = \angle LAC$ and $\angle ANB =$ $\angle ACL$) we have

$$
\frac{AC}{AL} = \frac{AN}{AB} \quad \text{or} \quad AN^2 = \frac{b^2c^2}{l_a^2}.\tag{0.1}
$$

On the other hand, since $\triangle ALH$ is similar to $\triangle NLM$ (check this!) we have

$$
\frac{NL}{AL} = \frac{ML}{LH},
$$

implying

$$
\frac{AN}{AL} = \frac{MH}{LH} \quad \text{or} \quad AN^2 = \frac{l_a^2(m_a^2 - h_a^2)}{l_a^2 - h_a^2}.
$$
 (0.2)

(0.1) and (0.2) give

$$
b^2c^2 = \frac{l_a^4(m_a^2 - h_a^2)}{l_a^2 - h_a^2}.
$$

It is well known that $R=\frac{bc}{2h_a}$. Therefore,

$$
\frac{l_a^4(m_a^2 - h_a^2)}{h_a^2(l_a^2 - h_a^2)} = 4R^2.
$$

Q1304 Prove that the equation $x^2 - 2y^2 = 5$ has no integral roots.

ANS: Assume that there exist integers x and y satisfying the given equation. It follows that

$$
(x-1)(x+1) = 2y^2 + 4.
$$

Thus $x - 1$ and $x + 1$ are two consecutive even integers. By writing $x - 1 = 2n$ and $x + 1 = 2n + 2$ for some integer *n* we deduce

$$
y^2 + 2 = 2n(n+1),
$$

implying that y is an even integer. Putting $y = 2m$ and substituting back into the above equation we obtain

$$
2m^2 + 1 = n(n+1),
$$

which is a contradiction, because the left-hand side is odd whereas the right-hand side is even.

Q1305 The result in **Q1304** is also true in a more general case with the right-hand side being $m = 8k + 3$ or $m = 8k - 3$, $k = 1, 2, \dots$ Prove this!

ANS: We prove only the case when $m = 8k + 3$. Similarly to **Q1304** we now have

$$
y^2 + 4k + 1 = 2n(n+1).
$$

Since $n(n + 1)$ is even, we have

$$
y^2 + 4k + 1 = 4l
$$

for some positive integer l .

Q1306 Find all positive integers *n* such that $2^n + 1$ is a multiple of 3. **ANS:**

Solution 1: (suggested by David Shaw, Geelong, Victoria) Since $2 \equiv -1 \pmod{3}$ we have

$$
2^{n} + 1 \equiv (-1)^{n} + 1 \pmod{3} \equiv \begin{cases} 0 \pmod{3} & \text{if } n \text{ is odd} \\ 2 \pmod{3} & \text{if } n \text{ is even.} \end{cases}
$$

Hence $2^n + 1$ is a multiple of 3 if and only if n is an odd integer.

Solution 2: By using

$$
a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})
$$

with $a = 2$ and $b = -1$ we obtain

$$
2^n - (-1)^n = 3A,\tag{0.3}
$$

where A is an integer. If n is odd we deduce from (0.3)

$$
2^n + 1 = 3A,
$$

that is $2^n + 1$ is a multiple of 3. If *n* is even we deduce from (0.3)

$$
2^n - 1 = 3A,
$$

and thus $2^n + 1 = 3A + 2$. Therefore, $2^n + 1$ is a multiple of 3 if and only if *n* is odd.

Q1307 Let a, b, c and d be, respectively, the lengths of the sides AB, BC, CD, and DA of a quadrilateral $ABCD$. Prove that if S is the area of $ABCD$ then

$$
S \le \frac{a+c}{2} \times \frac{b+d}{2}.
$$

When does the equality occur?

ANS: We consider two cases:

Case 1: ABCD is convex. Then

$$
S = S_{\Delta ABD} + S_{\Delta BCD} = \frac{1}{2} (ad \sin A + bc \sin C) \le \frac{1}{2} (ad + bc).
$$

Similarly, $S \leq \frac{1}{2}$ $\frac{1}{2}(cd+ab)$. Hence

$$
2S \le \frac{1}{2}(ad + bc + cd + ab) = \frac{1}{2}(a + c)(b + d),
$$

which then implies the required inequality.

Case 2: ABCD is not convex. Then one diagonal is outside the quadrilateral. Assume that this diagonal is BD . Let C' be the reflection of C about \overrightarrow{BD} . Then $ABC'D$ is convex and has side lengths a , b , c and d . Therefore, it follows from Case 1 that

$$
S_{ABCD} < S_{ABC'D} \le \frac{a+c}{2} \times \frac{b+d}{2}.
$$

Equality occurs when $\sin A = \sin B = \sin C = \sin D = 90^\circ$. In that case ABCD is a rectangle ($a = c$ and $b = d$) and $S = ab$.

Q1308 In a triangle ABC let H be the foot of the altitude from A, and M be the midpoint of BC. On the circumcircle, let D be the midpoint of the arc BC which does not contain A. Assume that there exists a point I on the edge BC satisfying $IB \times IC = IA^2$. Prove that $AH \leq MD$. Is the converse true?

Prolong AI to cut the circle at E and draw $EK \perp BC$ as in the picture. Then $IA \times$ $IE = IB \times IC$. Hence $IA = IE$, and therefore $\Delta AHI = \Delta EKI$. It follows that $AH = EK \le MD$.

Now assume that $AH \leq MD$. We show that there exists a point I on BC satisfying $IB \times IC = IA^2$. Let F be the point on MD such that $MF = AH$. Draw a line passing through F and parallel with BC . This line cuts the circle at two points (E is one of these two points). Connecting A with any one of these two points, the intersection with BC will be *I* satisfying $IB \times IC = IA^2$. Check this!

Q1309 Assume that there exists a point I on the side BC of a triangle ABC which satisfies $IA^2 = IB \times IC$. Prove that

$$
\sin B \times \sin C \le \sin^2 \frac{A}{2}.
$$

Is the converse true?

ANS: First we note that

$$
AB = 2R\sin C, \quad BC = 2R\sin A, \quad \text{and} \quad CA = 2R\sin B,\tag{0.4}
$$

where *R* is the radius of the circle in **Q1308**. For example, to prove $BC = 2R \sin A$ we note that if O is the centre of the circle then

$$
BC = 2BM = 2OB \sin(\angle BOM) = 2R \sin A.
$$

ANS:

Similarly, we can prove the other identities. Since $AH = AB \sin B$ we have

$$
AH = 2R\sin B \times \sin C. \tag{0.5}
$$

On the other hand, we have

$$
MD = MB \cot(\angle BDM) = \frac{1}{2} BC \cot(\angle BDC/2) = \frac{1}{2} BC \tan(A/2).
$$

By using (0.4) we deduce

$$
MD = R\sin A \times \tan(A/2) = 2R\sin^2(A/2).
$$

The required result now follows from (0.5) and the result in **Q1308**. Check that the converse is also true, that is if $\sin B \times \sin C \leq \sin^2(A/2)$ then there exists I on BC satisfying $IA^2 = IB \times IC$.

Q1310 Let a, b, c, and d be 4 positive real numbers satisfying

$$
\frac{1}{1+a^4} + \frac{1}{1+b^4} + \frac{1}{1+c^4} + \frac{1}{1+d^4} = 1.
$$

Prove that $abcd \geq 3$.

ANS: By writing

$$
a^2 = \tan A
$$
, $b^2 = \tan B$, $c^2 = \tan C$, $d^2 = \tan D$,

where $A, B, C, D \in (0, \pi/2)$, we have from the given identity

$$
\sin^2 A = 1 - \cos^2 A = \cos^2 B + \cos^2 C + \cos^2 D.
$$

The Cauchy inequality

$$
\frac{\alpha+\beta+\gamma}{3}\geq \sqrt[3]{\alpha\beta\gamma}
$$

yields

$$
\sin^2 A \ge 3(\cos^2 B \cos^2 C \cos^2 D)^{2/3}.
$$

Similarly, we have

$$
\sin^2 B \ge 3(\cos^2 C \cos^2 D \cos^2 A)^{2/3}
$$

\n
$$
\sin^2 C \ge 3(\cos^2 D \cos^2 A \cos^2 B)^{2/3}
$$

\n
$$
\sin^2 D \ge 3(\cos^2 A \cos^2 B \cos^2 C)^{2/3}.
$$

Multiplying all four inequalities gives

$$
\sin^2 A \, \sin^2 B \, \sin^2 C \, \sin^2 D \ge 3^4 \cos^2 A \, \cos^2 B \, \cos^2 C \, \cos^2 D,
$$

implying

$$
\tan^2 A \, \tan^2 B \, \tan^2 C \, \tan^2 D \ge 3^4,
$$

or $abcd \geq 3$.