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Solutions to Problems 1301–1310

Q1301 (Suggested by J. Guest, Victoria) Solve the quartic

(x+ 1)(x+ 5)(x− 3)(x− 7) = −135.

ANS: (suggested by David Shaw, Geelong, Victoria)

Rearrange the equation as

(x2 − 2x− 3)(x2 − 2x− 35) = −135.

By setting z = x2 − 2x, the above equation becomes

z2 − 38z + 240 = 0,

which has solutions z1 = 30 and z2 = 8. Solving the two equations x2 − 2x = 30 and
x2 − 2x = 8 results in 4 solutions to the quartic equation

x1 = 1 +
√
31, x2 = 1−

√
31, x3 = 4, and x4 = −2.

Q1302 Let α, β and γ be the angles of one triangle, and α′, β′ and γ′ be the angles of
another triangle. Assume that α = α′, β ≥ γ and β′ ≥ γ′. Prove that

sinα + sin β + sin γ ≥ sinα′ + sin β′ + sin γ′

if and only if
β − γ ≤ β′ − γ′.

ANS: Assume that

sinα + sin β + sin γ ≥ sinα′ + sin β′ + sin γ′.

Then since α = α′ we have

sin β + sin γ ≥ sin β′ + sin γ′.

By using the addition formula for sines and cosines we can prove that

sin β + sin γ = 2 sin
β + γ

2
cos

β − γ

2

and

sin β′ + sin γ′ = 2 sin
β′ + γ′

2
cos

β′ − γ′

2
.
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Noting that the sum of the angles in a triangle is 180◦ we deduce

cos
α

2
cos

β − γ

2
≥ cos

α′

2
cos

β′ − γ′

2
.

or

cos
β − γ

2
≥ cos

β′ − γ′

2
.

The fact that 0 ≤ β−γ
2
, β

′
−γ′

2
≤ 90◦ gives β−γ

2
≤ β′

−γ′

2
, therefore

β − γ ≤ β′ − γ′. By reversing the argument, we can prove that if β − γ ≤ β′ − γ′ then
sinα + sin β + sin γ ≥ sinα′ + sin β′ + sin γ′.

Q1303 (Suggested by Dr. Panagiote Ligouras, Leonardo da Vinci High School, Noci,
Bari, Italy. Edited.)

Let ma, mb, mc be the medians, ha, hb, hc the heights, la, lb, lc the bisectors and R the
circumradius of a scalene triangle ABC. Prove that

l3a(ma − ha)
√
maha

ha(l2a − h2
a)

+
l3b (mb − hb)

√
mbhb

hb(l2b − h2

b)
+

l3c(mc − hc)
√
mchc

hc(l2c − h2
c)

< 6R2.

ANS: Since ∆ABC is scalene, ha < la, hb < lb and hc < lc. Hence

l3a(ma − ha)
√
maha

ha(l2a − h2
a)

+
l3b (mb − hb)

√
mbhb

hb(l2b − h2

b)
+

l3c(mc − hc)
√
mchc

hc(l2c − h2
c)

<
l4a(ma − ha)

√
maha

h2
a(l

2
a − h2

a)
+

l4b (mb − hb)
√
mbhb

h2

b(l
2

b − h2

b)
+

l4c(mc − hc)
√
mchc

h2
c(l

2
c − h2

c)
.

By using
√
αβ ≤ (α + β)/2 we deduce

l3a(ma − ha)
√
maha

ha(l2a − h2
a)

+
l3b (mb − hb)

√
mbhb

hb(l2b − h2

b)
+

l3c(mc − hc)
√
mchc

hc(l2c − h2
c)

<
1

2

l4a(ma − ha)(ma + ha)

h2
a(l

2
a − h2

a)
+

1

2

l4b (mb − hb)(mb + hb)

h2

b(l
2

b − h2

b)
+

1

2

l4c(mc − hc)(mc + hc)

h2
c(l

2
c − h2

c)

=
1

2

l4a(m
2
a − h2

a)

h2
a(l

2
a − h2

a)
+

1

2

l4b (m
2

b − h2

b)

h2

b(l
2

b − h2

b)
+

1

2

l4c(m
2
c − h2

c)

h2
c(l

2
c − h2

c)
.

If we can prove that

l4a(m
2
a − h2

a)

h2
a(l

2
a − h2

a)
=

l4b (m
2

b − h2

b)

h2

b(l
2

b − h2

b)
=

l4c(m
2
c − h2

c)

h2
c(l

2
c − h2

c)
= 4R2,

then the required inequality is proved.

It suffices to prove
l4a(m

2
a − h2

a)

h2
a(l

2
a − h2

a)
= 4R2.
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Let H , L and M be the feet of ha, la, and ma on BC. The line AL cuts the circumcircle
again at N . Since ∆ABN is similar to ∆ALC (having ∠BAN = ∠LAC and ∠ANB =
∠ACL) we have

AC

AL
=

AN

AB
or AN2 =

b2c2

l2a
. (0.1)

On the other hand, since ∆ALH is similar to ∆NLM (check this!) we have

NL

AL
=

ML

LH
,

implying
AN

AL
=

MH

LH
or AN2 =

l2a(m
2
a − h2

a)

l2a − h2
a

. (0.2)

(0.1) and (0.2) give

b2c2 =
l4a(m

2
a − h2

a)

l2a − h2
a

.

It is well known that R = bc
2ha

. Therefore,

l4a(m
2
a − h2

a)

h2
a(l

2
a − h2

a)
= 4R2.

Q1304 Prove that the equation x2 − 2y2 = 5 has no integral roots.

ANS: Assume that there exist integers x and y satisfying the given equation. It
follows that

(x− 1)(x+ 1) = 2y2 + 4.

Thus x − 1 and x + 1 are two consecutive even integers. By writing x − 1 = 2n and
x+ 1 = 2n+ 2 for some integer n we deduce

y2 + 2 = 2n(n+ 1),

implying that y is an even integer. Putting y = 2m and substituting back into the above
equation we obtain

2m2 + 1 = n(n+ 1),

which is a contradiction, because the left-hand side is odd whereas the right-hand side
is even.

Q1305 The result inQ1304 is also true in a more general case with the right-hand side
beingm = 8k + 3 or m = 8k − 3, k = 1, 2, . . .. Prove this!

ANS:We prove only the case whenm = 8k + 3. Similarly to Q1304we now have

y2 + 4k + 1 = 2n(n+ 1).

Since n(n+ 1) is even, we have

y2 + 4k + 1 = 4l

for some positive integer l.
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Q1306 Find all positive integers n such that 2n + 1 is a multiple of 3.

ANS:

Solution 1: (suggested by David Shaw, Geelong, Victoria)

Since 2 ≡ −1 (mod 3) we have

2n + 1 ≡ (−1)n + 1 (mod 3) ≡

{

0 (mod 3) if n is odd

2 (mod 3) if n is even.

Hence 2n + 1 is a multiple of 3 if and only if n is an odd integer.

Solution 2: By using

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1)

with a = 2 and b = −1 we obtain

2n − (−1)n = 3A, (0.3)

where A is an integer. If n is odd we deduce from (0.3)

2n + 1 = 3A,

that is 2n + 1 is a multiple of 3. If n is even we deduce from (0.3)

2n − 1 = 3A,

and thus 2n + 1 = 3A+ 2. Therefore, 2n + 1 is a multiple of 3 if and only if n is odd.

Q1307 Let a, b, c and d be, respectively, the lengths of the sides AB, BC, CD, andDA
of a quadrilateral ABCD. Prove that if S is the area of ABCD then

S ≤
a+ c

2
×

b+ d

2
.

When does the equality occur?

ANS:We consider two cases:

Case 1: ABCD is convex. Then

S = S∆ABD + S∆BCD =
1

2
(ad sinA+ bc sinC) ≤

1

2
(ad+ bc).

Similarly, S ≤ 1

2
(cd+ ab). Hence

2S ≤
1

2
(ad+ bc+ cd+ ab) =

1

2
(a+ c)(b+ d),

which then implies the required inequality.
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Case 2: ABCD is not convex. Then one diagonal is outside the quadrilateral. As-
sume that this diagonal is BD. Let C ′ be the reflection of C about BD. Then ABC ′D is
convex and has side lengths a, b, c and d. Therefore, it follows from Case 1 that

SABCD < SABC′D ≤
a+ c

2
×

b+ d

2
.

Equality occurs when sinA = sinB = sinC = sinD = 90◦. In that case ABCD is a
rectangle (a = c and b = d) and S = ab.

Q1308 In a triangle ABC let H be the foot of the altitude from A, and M be the mid-
point of BC. On the circumcircle, let D be the midpoint of the arc BC which does not
containA. Assume that there exists a point I on the edgeBC satisfying IB×IC = IA2.
Prove that AH ≤ MD. Is the converse true?
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ANS:

A

B C

D

MHI

E

K

Prolong AI to cut the circle at E and draw EK ⊥ BC as in the picture. Then IA ×
IE = IB × IC. Hence IA = IE, and therefore ∆AHI = ∆EKI . It follows that
AH = EK ≤ MD.

Now assume that AH ≤ MD. We show that there exists a point I on BC satisfying
IB × IC = IA2. Let F be the point on MD such that MF = AH . Draw a line passing
through F and parallel withBC. This line cuts the circle at two points (E is one of these
two points). Connecting A with any one of these two points, the intersection with BC
will be I satisfying IB × IC = IA2. Check this!

Q1309 Assume that there exists a point I on the side BC of a triangle ABC which
satisfies IA2 = IB × IC. Prove that

sinB × sinC ≤ sin2
A

2
.

Is the converse true?

ANS: First we note that

AB = 2R sinC, BC = 2R sinA, and CA = 2R sinB, (0.4)

where R is the radius of the circle in Q1308. For example, to prove BC = 2R sinA we
note that if O is the centre of the circle then

BC = 2BM = 2OB sin(∠BOM) = 2R sinA.
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Similarly, we can prove the other identities. Since AH = AB sinB we have

AH = 2R sinB × sinC. (0.5)

On the other hand, we have

MD = MB cot(∠BDM) =
1

2
BC cot(∠BDC/2) =

1

2
BC tan(A/2).

By using (0.4) we deduce

MD = R sinA× tan(A/2) = 2R sin2(A/2).

The required result now follows from (0.5) and the result in Q1308. Check that the
converse is also true, that is if sinB × sinC ≤ sin2(A/2) then there exists I on BC
satisfying IA2 = IB × IC.

Q1310 Let a, b, c, and d be 4 positive real numbers satisfying

1

1 + a4
+

1

1 + b4
+

1

1 + c4
+

1

1 + d4
= 1.

Prove that abcd ≥ 3.

ANS: By writing

a2 = tanA, b2 = tanB, c2 = tanC, d2 = tanD,

where A,B,C,D ∈ (0, π/2), we have from the given identity

sin2 A = 1− cos2A = cos2 B + cos2 C + cos2 D.

The Cauchy inequality
α + β + γ

3
≥ 3

√

αβγ

yields
sin2 A ≥ 3(cos2 B cos2 C cos2 D)2/3.

Similarly, we have

sin2 B ≥ 3(cos2 C cos2 D cos2 A)2/3

sin2 C ≥ 3(cos2 D cos2 A cos2 B)2/3

sin2 D ≥ 3(cos2 A cos2 B cos2C)2/3.

Multiplying all four inequalities gives

sin2 A sin2 B sin2 C sin2 D ≥ 34 cos2 A cos2 B cos2 C cos2 D,

implying
tan2 A tan2 B tan2 C tan2 D ≥ 34,

or abcd ≥ 3.
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