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If you don’t find anything, is there really nothing there?

Dr Bernard Kachoyan'

Let us suppose that you are looking for some objects in a particular area. Now also
suppose that you find nothing after searching the area. Is there really nothing there?
Or, more generally, if you find N objects, then how many objects are there left to be
found? Equivalently, how many were actually there to be found in the first place? The
objects might be physical objects such as people in a search and rescue operation, or
animals, schools of fish, ore pockets or oil deposits. Or they might be “virtual” things
like bugs in computer code, faults in manufactured products, etc.

If the sensors you use, whether some electronic means or even your own eyes, are
perfectly capable and will find an object with 100% probability, then the answer is
clearly trivial. You have found all that were there to be found. But what happens if
your sensors are less than perfect, either inherently so, or perhaps because the objects
may be concealed or the environment difficult to search?

Moreover, if you know before the search (mathematicians call this a priori) that there
are )M objects there and you find N, then you also know that there are M — N left after
the search (called a posteriori). But what if the number of present objects is uncertain
and can be expressed as a probability distribution on the number of objects thought
to be present. Intuitively, if we find IV of these, then there should be a resultant (a
posteriori) distribution of the number of objects left.

We will see how these two distributions can be connected, together with the prob-
ability of finding each object, through what is known as Bayes” Theorem.

Thomas Bayes was an eighteenth century English statistician, as well as being a
Presbyterian minister. While his contemporaries were considering the more traditional
probabilities, for example the probability of pulling out a black ball from an urn con-
taining a certain number of white and black balls, he was considering what is some-
times called the inverse problem: given the colour of the drawn ball or balls, what can
we infer about the (unknown) number of white and black balls in the urn?

Before I present Bayes” Theorem, we need a reminder about the topic of conditional
probability. This is defined as the probability of an event B happening given that
another event A has also happened. This probability is expressed as P(B|A). It is easy
to show that P(B|A) = P(AN B)/P(A), where P(A N B) is the probability that both
A and B are true. As a simple example, suppose that we are told that a dice has just
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been rolled and that the rolled number is even. We are then asked to determine the
probability that the number is 2. The formula for conditional probability tells us that

P(Itisa2anditiseven) 1/6 1
P(Itis even) - 3/6 3’

P(Itisa?2|Itis even) =

which is obviously correct since there are only three possibilities (namely, 2, 4 and 6).

Bayes’ deceptively simple theorem states that P(A|B)P(B) = P(B|A)P(A). It is
more usually expressed as follows.

Bayes’ Theorem

P(B4) = LABILE) MJ'f?X; B

This theorem directly relates the probability that B is true given the observation A
to the probability that you would have observed A if B were actually true, and this can
be calculated directly from an estimate of whether B is true.

As a simple example of the use of this theorem, suppose that you want to estimate
the probability that it is sunny outside (event B) from an observation that a person
has come in the door wearing sunglasses (event A). In order to do this you need the
probability that someone would be wearing sunglasses if it were sunny and the similar
probability if it were not sunny (these do not necessarily add to 1). To complete the
analysis, you also need an initial estimate of the probability that it is sunny (sometimes
controversially called the prior belief that it is sunny), based on say a weather report or
what the weather was like some time ago, or even a best guess.

Just for the purposes of this example, suppose that we guess that it is generally
sunny half of the time, so P(B : sunny) = 0.5. We then further assume, estimate or
otherwise that P(A : sunglasses|B : sunny) = 0.8; in other words, there is an 80%
chance that a person will wear sunglasses if it is sunny. Similarly, we assume that
P(sunglasses|not sunny) = 0.3. This means that the overall probability that someone
is wearing sunglasses, P(A), is

0.8 x0.5+0.3x0.5=0.55.
From Bayes’ Theorem, we can then estimate that

P(A:sunglasses|B:sunny)P(sunny) 0.8x0.5
P(B:sunny|A:sunglasses) = & P(sunglasses)y Y) _ e = 0.73.

We see that if the person is wearing sunglasses, then there is roughly three-quarters
chance that it is sunny outside.

The key concept to gain from this example is that from P(B : sunny) = 0.5, the
prior belief in the truth of hypothesis B, we can after the observation A : sunglasses
estimate a new value of the belief in hypothesis B, expressed as the probability 0.73.
The observation of sunglasses has increased our belief in the hypothesis that it is sunny.
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One of the advantages of this approach is that it can be used sequentially so that
if another observation is made of someone wearing sunglasses, then we can reuse the
formulas with the new “belief” value of 0.73 instead of 0.5. Similarly, if we observe
someone without sunglasses, then we can use the formula again, with commensurate
“no sunglasses” probability, to get a new (lower) estimate of sunniness. (Try it!)

It is hopefully clear that if we can use the formula for individual probabilities, then
we can do so for probability distributions, simply by considering each option separately.
Suppose that, instead of the simple sunny/not sunny result in the above example, we
had three outcome options: sunny, partly cloudy or overcast. The a priori probabilities
could be 0.5, 0.4 and 0.1, with commensurate probabilities of wearing sunglasses in
each type of weather. An observation of whether sunglasses were worn could then be
used to update each of the a priori probabilities. I will not go through the calculations,
but I hope that I have convinced you that it is doable.

Let us now return to our original problem. Suppose that you have some idea, before
you start the search, of the probability of the number of objects present. This proba-
bility might be based on word-of-mouth rumour, output from a mathematical model
or even just a gut feeling. For the purposes of this example, let us suppose that this
distribution is as shown in Figure 1.

Figure 1: Probability distribution of the initial estimate of the number of objects
present.
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I have chosen to use a so-called Katz distribution, a generalization of the simple bi-
nomial distribution, as it turns out to make the maths (relatively) easier. A particularly
useful property of these distributions is that

Pin+1) a+pn

P(n) n+1’

where P(n) is the probability that the number n occurs, and « and 3 are related to the



Figure 2: Probability distribution of the number of objects left after a single search
where none are found, using a sensor with probability of detection 0.5.
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mean and standard deviation (SD) of the distribution as follows:

a Va
mean—m, SD_l—ﬁ

In Figure 1, we have chosen a and /3 so that the mean and SD of the expected number
of objects are both 2.

Now suppose that we search for these objects with a sensor for which the proba-
bility of detecting each of these objects is p. Suppose also that each detection is inde-
pendent and that we find NV objects. What is our new (a posteriori) distribution for the
number of objects that are left, i.e. that were there but we did not find? Using Bayes’
Theorem as discussed above, it can be shown that if the a priori distribution is the Katz
distribution with parameters o and §3, the a posteriori distribution of how many are left
is also a Katz distribution (I told you the maths would be “easier”), with new parame-
ters « = (1 —p)(a+ BN) and 5 = (1 — p)p. It is important to note that subtracting N
objects from the area does not necessarily reduce the mean number of objects expected
to remain (you can compare the new mean to the old mean to demonstrate this). This
may be a bit counter-intuitive but it arises because finding objects not only removes
them from the sample but also provides confirmatory evidence that there are objects
there to be found in the first place.

I will now illustrate with the question I originally posed in the title: What if you
look and do not find anything; is nothing actually there? This now simply relates
to looking at the N = 0 case. For a sensor with detection probability 0.5, the new
distribution looks like Figure 2.

Compared to Figure 1, the probability of there being multiple objects present has
gone down while the probability of there being at most 1 has increased. From Figure 2,
the answer to the question “What is the chance that nothing is there, given that we did
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not find anything?” is 0.56. Figure 3 shows how this answer varies with the probability
of detection.

Figure 3: Probability that no objects remain after a search which has found none, plot-
ted as a function of the detection probability of the search sensor. Graphs are also
shown for multiple searches of the same region, each which fails to find anything.
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If p = 0, then we have not added any information and the chance is the same
as that we started with in Figure 1, i.e., 0.25. At the other extreme, if our sensor is
100% effective, then we are sure there was nothing there to be found. The behaviour
in between is of the most interest and is as shown. I have already noted that Bayes’
Theorem can be used recursively, so I have also plotted how the probability increases
if you search the area multiple times without finding anything. It might be interesting
to note that if your sensor is less than about 40% effective, then there is still a reasonable
chance (say more than 20%) that something is there even if you have searched the area
three times. If you turn this statement around, then you can use this to avoid having
to directly specify the sensor’s performance. For instance, as long as you are confident
that the sensor is more than 60% effective, then you are fairly sure, depending on your
risk tolerance of course, that there is nothing to be found after three searches.

If the use of the distribution in Figure 1 seems bit artificial, then recall that the un-
derlying methodology applies no matter what the initial distribution is, even a made-
up one, such as the one where you are 60% sure there is one object there but think
that there is a 20% chance that there is nothing there, a 10% chance that there are two
there and a 10% chance that there are six there. It is just that the calculations become
ones that you have to do directly and numerically without the nice properties that I
mentioned.

As a final word, I note that there are a number of ways to approach this problem and
I have obviously simplified the description of the real world quite a lot. Nevertheless,
this is a good example of both the use of Bayes” Theorem and how to mathematically
handle uncertainty in real-world problems.
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