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Parametric Representations of Polynomial Curves Using Linkages

Hyung Ju Nam1 and Kim Christian Jalosjos2

Suppose that you want to draw a large perfect circle on a piece of fabric. A simple
technique might be to use a length of string and a pen as indicated in Figure 1: tie a
knot at one end (A) of the string, push a pin through the knot to make the center of
the circle, tie a pen at the other end (B) of the string, and rotate around the pin while
holding the string tight.

Figure 1: Drawing a perfect circle Figure 2: Pantograph

On the other hand, you may think about duplicating or enlarging a map. You might
use a pantograph, which is a mechanical linkage connecting rods based on parallelo-
grams. Figure 2 shows a draftsman’s pantograph3 reproducing a map outline at 2.5
times the size of the original.

As we may observe from the above examples, a combination of two or more points
and rods creates a mechanism to transmit motion. In general, a linkage is a system of
interconnected rods for transmitting or regulating the motion of a mechanism. Link-
ages are present in every corner of life, such as the windshield wiper linkage of a car4,
the pop-up plug of a bathroom sink5, operating mechanism for elevator doors6, and
many mechanical devices. See Figure 3 for illustrations.
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6http://machinedesign.com/markets/motion-control-simulation-better-and-faster
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Figure 3: Linkages: Windshield wiper, bathroom sink pop-up, elevator doors

It is useful to introduce the following definitions in analyzing systems of linkages.

Fixed point: A point whose position remains fixed during linkage motion.
It may act as a pivot.

Pivot: A point on one or more rods around which the rods may rotate.
Rod: A straight line segment connecting two distinct points.

It can be moved and rotated but neither bent nor stretched.
Mover: A particular point on a rod which rotates around a fixed point.
Driver: The rod on which the mover lies.
Marker: A point on a rod whose movement draws the desired curve.

For example, Figure 1 has the following characterization: A is a fixed point, the
string or line segment AB is a rod, and B is both a mover and a marker.

Figure 2 consists of 4 rods and pivots: A is a fixed point; AC, BD, DE, CF are rods
with fixed lengths; B,C,D,E are pivots; D is a mover and F is a marker.

Linkages all have in common that as the mover moves, the driver will cause the
linkage to move, thus causing the marker to draw the given curve. This curve can
therefore be seen as a function of the mover. In particular, we can express the position
of the marker in terms of the angle of rotation of the driver, for instance in parametric
form. For this purpose, we confine ourselves to linkages as mathematical drawing
devices consisting of rods pivoted together so as to turn about one another, usually in
the same plane or in parallel planes.

A circle in Figure 1 can be characterized as the set of all points with a fixed distance
from a fixed point. To generalise, a circle could also be seen as the set of all points with
fixed sum of distances from two identical points; if those two points are now allowed to
be distinct, then we have an ellipse. If we consider a fixed difference of distances from
two distinct points, then a hyperbola will be drawn. Then what kind of curve will be
emerge if the product of distances is constant? What if the distances from two fixed
points are equal? What if the distances from a fixed point and a fixed line are equal?

In this paper, we answer these three questions by constructing linkages which will
draw the whole or part of the desired curves characterized by distances from point(s)
and/or a line: the lemniscate of Bernoulli, the Peaucellier-Lipkin linkage for a straight
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line, and Yates’ parabola. Basic algebra, geometry and trigonometry are used to find
parametric representations of the loci (i.e., positions) of certain points in the system of
linkages so that we can check that the linkages do in fact produce the claimed curves.
The construction of linkages are carried out in Cinderella [2], an interactive geometry
software which enables us to simulate physical objects. See [4] for a user manual.

1 Lemniscate of Bernoulli

You may not heard of the lemniscate of Bernoulli but you will easily recognize its curve as
a figure-eight. Although not every figure-eight curve is a lemniscate, we can construct
one in terms of distances from two fixed points.

Formally, the lemniscate of Bernoulli is defined to be set of loci of points whose
product of distances from two fixed points at distance 2s from each other is s2. A three-
rod linkage as shown in Figure 4 produces a lemniscate of Bernoulli with the following
characterization.

Figure 4: Lemniscate of Bernoulli linkage

Fixed points: A, B
Pivots: C, E
Mover: C
Driver: AC
Marker: F is the midpoint of CE
Rods: AC, BE, CE where |AC| = |BE|

To find a parametric representation of the marker, we assume that

A = (0, 0) , B = (2s, 0) , |AC| = |BE| = 1 , |CE| = 2s

and that F is the midpoint of CE; see Figure 4. We measure the angle θ counterclock-
wise from the positive x-axis to the driver AC so that

C = (cos θ, sin θ) , CB = (2s− cos θ,− sin θ) , AE = t · CB for some constant t .
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The point E = t(2s− cos θ,− sin θ) satisfies |BE| = 1 which gives a quadratic equation
in t:

{t(2s− cos θ)− 2s}2 + (t sin θ)2 = 1 .

Since t = 1 is a trivial solution, it is not surprising to factor the equation and get the
solution set as {

4s2 − 1

4s2 − 4s cos θ + 1
, 1

}
.

Observing that the quadrilateral ACBE is an anti-parallelogram, we discard the solu-
tion t = 1 to represent E as

E =

(
(4s2 − 1)(2s− cos θ)

4s2 − 4s cos θ + 1
,
−(4s2 − 1) sin θ

4s2 − 4s cos θ + 1

)
and the marker F as

F =
C + E

2
=

(
1

2

[
cos θ +

(4s2 − 1)(2s− cos θ)

4s2 − 4s cos θ + 1

]
,
sin θ

2

[
−(4s2 − 1)

4s2 − 4s cos θ + 1
+ 1

])
.

After some calculation, we can check that if s = 1√
2
, then the curve satisfies the condi-

tion for a lemniscate of Bernoulli. In fact, if |AC| = |BE| = 1, |CE| =
√
2 = |AB|, then

the marker F can be simplified as

F =

(
1

2

[
cos θ +

√
2− cos θ

3− 2
√
2 cos θ

]
,
sin θ

2

[
1− 1

3− 2
√
2 cos θ

])

which gives the identity

|AF | · |BF | = 1

2
= s2 .

For a simple geometric proof, see [1].

Figure 5: Lemniscate of Bernoulli curve

Figure 5 shows the lemniscate of Bernoulli drawn by marker F .
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2 Peaucellier-Lipkin linkage

If we draw all points equidistant from two distinct fixed points, then we obtain a
straight line which is a perpendicular bisector of the line segment of those two fixed
points. A machine that will draw an exact straight line segment is the most basic and
fundamental equipment in various fields of applications. In this section, we will fo-
cus on the Peaucellier-Lipkin linkage (Figure 6). It combines a line segment (BG) and a
Peaucellier inversor consisting of 6 rods which will draw a vertical line segment.

Figure 6: Peaucellier-Lipkin linkage

Fixed points: A, B
Pivots: D, E, G, F
Mover: G
Driver: BG
Marker: F
Rods: AD, AE with |AD| = |AE| = R

BG, EG with |BG| = |EG|
EG, GD, DF , EF all of equal length r.

For a parametric representation, suppose that A = (0, 0), B = (1, 0) and BG = 1;
see Figure 6. If θ is the angle between the positive x-axis and the driver BG measured
counterclockwise, thenG = (X̃, Ỹ ) = (1+cos θ, sin θ). Two pointsD andE are solutions
of the system of equations

(x− X̃)2 + (y − Ỹ )2 = r2 , x2 + y2 = R2 .

Solving these equations, we obtain the equation of the line L passing throughD andE:

2X̃x+ 2Ỹ y = R2 − r2 + X̃2 + Ỹ 2 .

Observing that the line L is a perpendicular bisector of the line segment GF , we have
a set of conditions for the marker F = (X, Y ):(

X + X̃

2
,
Y + Ỹ

2

)
is on L ,

Y − Ỹ
X − X̃

× (slope of L) = −1 ,
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which can be simplified as

XX̃ + Y Ỹ = R2 − r2 , Y =
Ỹ

X̃
·X .

Now we solve for X and Y to get

X =
1

2
(R2 − r2) , Y =

sin θ

2(1 + cos θ)
(R2 − r2) .

This parametric representation confirms that the curve is really a part of a vertical line.
The curve drawn by the marker is shown in Figure 7.

Figure 7: Locus of Peaucellier-Lipkin linkage

How can we determine the length of the vertical line segment in terms of R and r?
What is the range of θ?

The maximum height h of the marker occurs when A, D, E, F and G are collinear.
Using the Pythagorean Theorem, we get h2 = (R + r)2 − (1

2
(R2 − r2))2 which can be

simplified as

h = (R + r)

√
1−

(
R− r
2

)2

.

In addition, the range of θ can be found from the relation below

sin θ = sin (π − θ) = (R− r) · h

R + r
= (R− r)

√
1−

(
R− r
2

)2

which gives the range of θ as

|θ| ≤ sin−1

(R− r)

√
1−

(
R− r
2

)2
 .

Finally, for any specified line segment, we can locate two fixed points A, B on the
perpendicular bisector of the line segment and determine the rod lengths R and r.
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3 Yates’ Parabola

A parabola has an geometrically intuitive interpretation: it is the set of all points that
are at the same distance to a given line as to a fixed point. Van Schooten’s rhombus
linkage reveals this nature of the graph (see [5]). The construction, however, contains
sliders in addition to rods and points. This is why we focus on another representation
by Yates (see [3]) which combines a Peaucellier inversor and the lemniscate of Bernoulli
as shown in Figure 8.

Figure 8: Yates’ parabola linkage

Fixed points: A, C, G
Pivots: B, D, E, K, L, N
Mover: B
Driver: AB
Marker: N
Rods: AE, CE, DL, LN , NK, KD,

each of length 2|AG| = 1
2
|AC|

GL and GK with |GL| = |GK| = 4|AG|
BD and DE with BD : DE = 3 : 1

Suppose that A = (−1, 0) and C = (3, 0). We then have the following coordinates:

B = (−1 + 2 cos θ, 2 sin θ)

E =

(
7− 2 cos θ

5− 4 cos θ
,
−6 sin θ

5− 4 cos θ

)
D = (x, y) =

(
−2(1 + cos θ)(cos θ − 2)

5− 4 cos θ
,
−2(1 + cos θ) sin θ

5− 4 cos θ

)
N = (X, Y ) =

(
12x

x2 + y2
,

12y

x2 + y2

)
where θ is the angle between the driver AB and the positive x-axis measured counter-
clockwise. The derivation of these points is similar to that of the lemniscate of Bernoulli
and the Peaucellier-Lipkin linkages and is left for the reader.
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We can easily check that Y 2/(X − 3) is the constant 4, so we get the following
recognizable equation:

Y 2 = 4(X − 3) .

The driver AB does not make a full revolution. In fact, observing that the extreme case
occurs when |AG| = 2, we can determine the range of the angle θ as follows:

[− cos−1 (−3 +
√
13), cos−1 (−3 +

√
13)] .

Thus our linkage draws part of a parabola (see Figure 9). The range of the parabola de-
pends on the lengths and positions of the rods and points, respectively, of the linkage.

Figure 9: Yates’ parabola

4 Conclusions

In this paper, we have investigated three specific linkages: the lemniscate of Bernoulli,
the Peaucellier-Lipkin linkage for a straight line segment, and Yates’ parabola. By treat-
ing the location of the marker as a function of a mover, we have constructed parametric
representations and confirmed algebraically that each marker indeed draws the de-
sired curve. The geometry software Cinderella is used to visualize the simulation.

The lemniscate of Bernoulli can be realized as a trace of a marker in a three-rod link-
age, and the Peaucellier inversor enables us to create a straight line segment. Finally, a
combination of a Peaucellier inversor and the lemniscate of Bernoulli produces a Yates’
parabola which illustrates how linkages may be combined as building blocks to create
new linkages.
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