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1 Solutions 1481–1490
Q1481 Prove that if the denominator q of a fraction p/q is the number consisting of
n digits, all equal to 9, and if p is less than q, then p/q can be written as a repeating
decimal in which the repeating part has length n and contains the digits of p, preceded
by a sufficient number of 0s to give that length.

SOLUTION We can write down the repeating decimal described and sum a geometric
series to get

p

10n
+

p

102n
+

p

103n
+ · · · = p

10n
1

1− 1

10n

=
p

10n − 1
=

p

q
.

Q1482 If the acute angles α and β satisfy the equation

(1− cotα)(1− cot β) = 2 ,

find the value of α + β.

SOLUTION Multiplying by sinα sin β, we have

(sinα− cosα)(sin β − cos β) = 2 sinα sin β ,

which can be arranged to give

cosα cos β − sinα sin β = sinα cos β + cosα sin β .

Using the formulae for sine and cosine of a sum, we have

cos(α + β) = sin(α+ β)

and hence
tan(α+ β) = 1 .

Thus α + β = π

4
+ nπ, and since α and β are acute, we have 0 < α + β < π and hence

α + β =
π

4
.

Q1483 We have a geometric sequence a1, a2, a3, . . . for which it is known that

a1 + a3 + a5 + a7 = 5102 and a2 + a4 + a6 = 2015 .

Evaluate
a21 + a22 + a23 + a24 + a25 + a26 + a27 .
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SOLUTION Since we have a geometric sequence, each term is the geometric mean of
the adjacent terms:

a22 = a1a3 , a23 = a2a4

and so on. The same sort of thing holds if we move not one step but, say, k steps away
from a particular term,

a2
n
= an−kan+k .

Therefore

(a1 + a3 + a5 + a7)
2 = a21 + a23 + a25 + a27 + 2a1a3 + 2a1a5

+ 2a1a7 + 2a3a5 + 2a3a7 + 2a5a7

= a21 + a23 + a25 + a27 + 2a22 + 2a23
+ 2a24 + 2a24 + 2a25 + 2a26

= a21 + 2a22 + 3a23 + 4a24 + 3a25 + 2a26 + a27
(a2 + a4 + a6)

2 = a22 + a24 + a26 + 2a2a4 + 2a2a6 + 2a4a6

= a22 + a24 + a26 + 2a23 + 2a24 + 2a25
= a22 + 2a23 + 3a24 + 2a25 + a26 .

Subtracting these two expressions gives exactly what we want!

a21 + a22 + a23 + a24 + a25 + a26 + a27 = (a1 + a3 + a5 + a7)
2 − (a2 + a4 + a6)

2

= 51022 − 20152

= 21970179 .

Q1484 Let n = 6 and take the numbers in the nth row of Pascal’s triangle, leaving out
the last of them:

1, 6, 15, 20, 15, 6 .

Notice that in this list the first number is a multiple of 1, the second is a multiple of 2,
the third is a multiple of 3 and so on, all the way through to the nth number, which is
a multiple of n. Prove that this works whenever n+ 1 is prime.

SOLUTION Writing the claim in algebraic terms, we are asked to prove that if n+ 1 is
prime and k = 1, 2, . . . , n, then

(

n

k − 1

)

is a multiple of k .

Now according to a reasonably well known formula (proof below),

k

(

n + 1

k

)

= (n+ 1)

(

n

k − 1

)

.

Since binomial coefficients are integers, this shows that the right-hand side is a multiple
of k. But if n + 1 is prime and k = 1, 2, . . . , n, then k and n + 1 have no common factor,
so

(

n

k−1

)

is a multiple of k, as claimed.
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Addendum: proof of the above formula.

Method 1 , a combinatorial proof. Consider a club with n + 1 members. We wish to
choose k members to form a committee, and one of those k to be the president of the
committee. To do this we could choose the whole committee first, so

(

n+1

k

)

possibilities;

then there are k ways to choose the president, so there are k
(

n+1

k

)

possible outcomes. On
the other hand, we could choose the president first, so n + 1 possibilities; then choose
k − 1 further committee members from the remaining n club members; so (n+ 1)

(

n

k−1

)

possible outcomes. Since the two expressions we have just found are answers to the
same problem, they must be equal.

Method 2 , an algebraic proof: write both sides in terms of factorials and simplify.
We leave this to the reader.

Q1485 How many 10-digit numbers x are there such that x ends with the digits 2015
and x2 begins with the digits 2015?

SOLUTION If x is a 10-digit number, then 109 ≤ x < 1010 and so

1018 ≤ x2 < 1020 .

If x2 begins with the digits 2015, there are two options:

2015× 1015 ≤ x2 < 2016× 1015

or 2015× 1016 ≤ x2 < 2016× 1016 .

Using a calculator (and remembering that x is an integer),

1419506957 ≤ x ≤ 1419859147

or 4488875138 ≤ x ≤ 4489988864 .

But since x ends in the digits 2015, the options are

x = 1419512015 to 1419852015 or 4488882015 to 4489982015 ,

and the number of possibilities is

(141985− 141950) + (448998− 448887) = 146 .

Q1486 In Question 1479 we showed that a maximum of eight crosses like this one
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can be placed without overlapping on an 8× 8 chessboard. Next, imagine that the top
of the board is joined to the bottom and the left side is joined to the right, so that crosses
may be placed (for example) as shown, in addition to the “ordinary” placements.

What is now the maximum number of crosses that can be placed on the board?

SOLUTION The maximum is 10. This can quite easily be done by trial and error,

but once again the difficult part of the question is to prove that more than this number
is not possible.

Each cross has a centre square. We shall consider the number of “centres” in each
column: for example, the above diagram gives the pattern 12112120. Note that since
the left and right sides of the board are regarded as being adjacent, we could just as well
describe the pattern as 12012112 (starting at the third column from the right). We begin
with a simple observation: each column of the board can contain at most two “centres”
(for if there were three, those centres plus the squares above and below them would
require 9 squares in the column). Next: can we have two adjacent columns containing
two centres each? Yes we can, but then each of these columns contains two centres
and four squares above and below them from the same crosses, plus two squares from
the crosses with centres in the next column. This fills up all 8 squares in each of these
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columns,

0 2 2 0

and it follows that the two columns to the left and right cannot contain any centres.

Now suppose that it is possible to place 11 crosses on the “wraparound” chessboard.
Then there must be four adjacent columns which contain, collectively, 6 or more cen-
tres. The possible patterns with 8 or 7 centres are

2222 , 2221 , 2212 ,

and since we have already proved that two adjacent 2s must be surrounded by a 0
on each side, these are all impossible. Thus there must be 6 centres in four adjacent
columns, and 5 centres in the other four. In fact, we can never have a pair of adjacent
2s at all: for then four consecutive columns would be 0220, and the other four columns
would contain seven centres, which is impossible. Because of this, the only possible
pattern of six centres in four adjacent columns is 2121. This must extend to a pattern

21212120 or 21212111 or 21211211

for the whole board. Each of these contains a sub-pattern 12121, and this is what we
investigate next. For a column with two centres, there are two options: the crosses
with the centres in this column are adjacent to each other, or they are not. These are
illustrated in the following diagrams,

2 1 1 2 1 2 1 1 2 1
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Now in the second diagram there must be two centres in the squares marked with dots:
it is easy to see that this is impossible without the crosses overlapping. So this case is
ruled out. The first diagram can be continued to the following:

2 1 1 2 1
a

a

a
a a

b
b

b

c

d

d
d

To avoid overlapping we can have only one centre marked a, only one marked b and
only one marked d: so if we are to place four further crosses, the single centre marked
c is obligatory. This eliminates two of the possible bs and ds, forcing us to place ten
crosses as follows,

and there is no room for an eleventh.
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Q1487 Determine how many values of x satisfy the conditions

x2 − x⌊x⌋ = 20·15 , x ≤ 2015 .

Here the notation ⌊x⌋ denotes x rounded to the nearest integer downwards, for exam-
ple, ⌊π⌋ = 3.

SOLUTION First we note that x = 2015 is not a solution, so we may assume x < 2015.
Now let ⌊x⌋ = n. Then n is an integer, n ≤ 2014, and x = n + α, where 0 ≤ α < 1.
Substituting into the “quadratic” and simplifying, we get

nα + α2 = 20·15 .

Now 0 ≤ α < 1, so n cannot be negative and we have

n+ 1 > nα + α2 ,

so n ≥ 20. There are 1995 values of n from 20 to 2014; we shall show that for each of
these values, there is exactly one possible value of α and hence one possible value of x.

Consider nα + α2 as a quadratic in α. This quadratic increases continuously from
the value 0 (which obviously is less than 20·15) when α = 0 to the value n + 1 (which
by assumption is greater than 20·15) when α = 1; so there is exactly one value of α at
which nα+α2 = 20·15. Thus we have 1995 possible value of n, each with one associated
value of α, giving 1995 values of x.

Q1488 Let m be a integer, m ≥ 2. Prove that there is a cubic polynomial

p(x) = x3 + ax2 + bx+ c

with integer coefficients, such that when x is an integer, p(x) is never a multiple of m.

SOLUTION Consider the possible remainders when the expression x3 − x2, for any
integer x, is divided by m. All possible remainders will be found by taking x =
0, 1, 2, . . . , m − 1. This gives m remainders; but they will not all be different, since
x = 0 and x = 1 both give remainder 0. Therefore there will be an integer c from 0 to
m−1 which is never found as a remainder when x3−x2 is divided by m; and therefore
p(x) = x3 − x2 − c never has remainder 0, that is, it is never a multiple of m.
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Q1489 The point (s, t) is the centre of a square. Three vertices of the square lie on the
parabola y = x2. If s = 3

2
, find the coordinates of all four vertices of the square.

SOLUTION Let the points on the parabola be A = (a, a2) and B = (b, b2) and C =
(c, c2), where ∠BAC is a right angle. Then (1) AB and AC are perpendicular, so the
product of their gradients is −1; (2) AB and AC have equal length; and (3) the point
(s, t) is the midpoint of BC. Writing these facts as equations and using the given value
s = 3

2
, we have

b2 − a2

b− a

c2 − a2

c− a
= −1 (1)

(b− a)2 + (b2 − a2)2 = (c− a)2 + (c2 − a2)2 (2)

b+ c = 3 . (3)

Simplifying (1) and factorising (2) gives

(b+ a)(c+ a) = −1 (4)

(b− a)2[1 + (b+ a)2] = (c− a)2[1 + (c+ a)2] . (5)

Now multiply both sides of (5) by (b+ a)2 and substitute from (4) to get

(b+ a)2(b− a)2[1 + (b+ a)2] = (c− a)2[(b+ a)2 + 1] ,

that is,
(b2 − a2)2 = (c− a)2 .

There are two possibilities, b2−a2 = c−a or b2−a2 = a− c. We shall solve the first and
shall leave the reader to check that the second gives the same solution with the points
B and C interchanged, which makes no difference in terms of the stated question. So,
consider b2 − a2 = c− a, and use (3) to eliminate c from this equation and from (4). We
have

b2 − a2 = 3− a− b (6)

(b+ a)(3 + a− b) = −1 . (7)

Expanding (7) gives 3b+ 3a+ a2 − b2 = −1; adding (6) to this equation gives 3b+ 3a =
−1 + 3− a− b and so

a + b =
1

2
.

Substituting back into (7) leads to

a− b = −5

and it is now easy to get

a = −9

4
, b =

11

4
, c =

1

4
.
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Therefore three of the vertices of the square are

A =
(

−9

4
,
81

16

)

, B =
(11

4
,
121

16

)

, C =
(1

4
,
1

16

)

,

and the fourth, which does not lie on the parabola, is

D = B + C −A =
(21

4
,
41

16

)

.

Q1490 Let
S = cos 72◦ + cos 144◦ and T = cos 72◦ − cos 144◦ .

• Prove that 2ST = −T .

• Hence find the exact value of cos 72◦.

SOLUTION Write α = cos 72◦ and β = cos 144◦. Using the double angle formula, we
have

2α2 − 1 = cos 144◦ = β and 2β2 − 1 = cos 288◦ = cos 72◦ = α .

Therefore

2ST = 2(α+ β)(α− β)

= 2(α2 − β2)

= (2α2 − 1)− (2β2 − 1)

= β − α

= −T .

It is clear that T 6= 0, so S = −1

2
and the double angle formula from above gives

2α2 − 1 = −1

2
− α .

Solving the quadratic, and noting that since 72◦ is a first quadrant angle the negative
root must be rejected, gives

cos 72◦ = α =

√
5− 1

4
.
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