Parabola Volume 52, Issue 2 (2016)

Divisibility of integers

Farid Haggar[1](#page-0-0)

Generic rules for divisibility by small integers in the decimal system are well known and commonly used due to their simplicity. For instance, a number is divisible by 2 (i.e., it is even) if its last digit is divisible by 2; a number is divisible by $2^2 = 4$ if its last 2 digits are divisible by 4; and analogous rules are true for divisibility of 5 and $5² = 25$ as well. An integer is divisible by 3 if 3 divides the sum of its digits; this rule is also true for divisibility by 9. Similarly, an integer is divisible by 11 if 11 divides the alternating-signed sum of its digits.

In the text that follows, these rules are extended to integers n in an arbitrary base β . If

$$
n = \sum_{i=0}^{N} a_i \beta^{N-i} \quad \text{where } 0 \le a_i < \beta \quad \text{and } a_0 \ne 0 \,,
$$

then in base β , the integer n has digits a_0, a_1, \ldots, a_N , and we write $(n)_{\beta} = (a_0a_1 \ldots a_N)_{\beta}$.

For instance, $(315)_{10}$ represents the number 315 in the usual base 10, whereas

$$
315 = 1 \times 6^3 + 2 \times 6^2 + 4 \times 6^1 + 3 \times 6^0,
$$

so in base 6, this number is represented as $(1243)_6$. In general, $(n)_{\beta}$ is determined as follows:

$$
N = \left[\frac{\log n}{\log \beta}\right]
$$

\n
$$
a_i = \left[\frac{b_i}{\beta^{N-i}}\right], \quad i = 0, 1, \dots, N, \quad b_0 = N,
$$

\n
$$
b_{i+1} = b_i - a_i \beta^{N-i}.
$$

¹Farid Haggar completed his PhD at Latrobe University in 2002.

Proposition Consider the integer $(n)_{\beta} = (a_0 a_1 \dots a_N)_{\beta}$ in base β .

1. If $m|\beta$ and $m^j|(n)_{j,\beta}$ for some j with $1 \leq j \leq N$, where

$$
(n)_{j,\beta} := (a_{N-j+1} \dots a_{N-1} a_N)_{\beta} = \sum_{i=1}^j a_{N-j+i} \beta^{j-i}.
$$

then $m^j|(n)_{\beta}$. In particular, $\beta^j|(n)_{\beta}$ only if $a_{N-j+i}=0$ for $i=1,2,\ldots,j$.

2. If $m|(\beta - \lambda)$ and $m|(n)_{\lambda'}$ where

$$
(n)_{\lambda'} = \sum_{i=0}^{N} a_i (\lambda')^{N-i}, \quad \text{where} \quad \lambda' = \lambda - m \left[\frac{\lambda - 1}{m} \right], \quad (1)
$$

then $m|(n)_{\beta}$.

Hence, if
$$
m|(\beta - 1)
$$
 and $m|$ $\sum_{i=0}^{N} a_i$, then $m|(n)_{\beta}$;
if $m|(\beta + 1)$ and $m|$ $\sum_{i=0}^{N} (-1)^i a_i$, then $m|(n)_{\beta}$;
if β is odd and either $2|$ $\sum_{i=0}^{N} a_i$ or $2|$ $\sum_{i=0}^{N} (-1)^i a_i$, then $2|(n)_{\beta}$.

Examples

- 1. $3^2|(1243)_6$ since $3^2|(43)_6$ but $3^3 \nmid (1243)_6$ since $3^3 \nmid (243)_6$
- 2. $5|(4(15)(11))_{16}$ since $5|(4+15+11)$
- 3. 3|(16107)₈ since $3|(1-6+1-0+7)$
- 4. 2 $\{(123456)_5$ since $2 \{(1+2+3+4+5+6)$
- 5. 7|75075 since $(75075)_3 = 728$, $(728)_3 = 77$ $13|75075$ since $(75075)_{-3} = 416$, $(416)_{-3} = 39$
- 6. 19|19703 since $19703 = (2953)_{20}$ and $19|(2+9+5+3)$ or 19|19703 since $19703 = (36(14)(11))_{18}$ and $3 - 6 + 14 - 11 = 0$.

Proof.

1. We have

$$
\frac{(n)_{\beta}-(n)_{j,\beta}}{m^j}=\left(\frac{\beta}{m}\right)^j((n)_{\beta}\backslash(n)_{j,\beta}),
$$

where

$$
((n)_{\beta}\backslash (n)_{j,\beta})=(a_0a_1\ldots a_{N-j})_{\beta}=\sum_{i=0}^{N-j}a_i\beta^{N-j-i}.
$$

In particular,

$$
\frac{(n)_{\beta}-(n)_{j,\beta}}{\beta^j} = ((n)_{\beta}\backslash (n)_{j,\beta}), \qquad (n)_{j,\beta} < \beta^j.
$$

Hence $\beta^{j} |(n)_{\beta}$ only if $(n)_{j,\beta} = 0$.

2. We have

$$
(n)_{\beta} - (n)_{\lambda'} = \sum_{i=0}^{N-1} a_i \left(\beta^{N-i} - (\lambda')^{N-i} \right) .
$$

Hence,

$$
\frac{(n)_{\beta}-(n)_{\lambda'}}{m}=\left(\frac{\beta-\lambda}{m}+\left[\frac{\lambda-1}{m}\right]\right)\sum_{i=0}^{N-1}a_i\sum_{j=0}^{N-i-1}(\lambda')^{N-i-j-1}\beta^j.
$$

This completes the proof.

