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Tiling the plane with equilateral convex pentagons
Maria Fischer1

Mathematicians and non-mathematicians have been concerned with finding pentago-
nal tilings for almost 100 years, yet tiling the plane with convex pentagons remains the
only unsolved problem when it comes to monohedral polygonal tiling of the plane.
One of the oldest and most well known pentagonal tilings is the Cairo tiling shown
below. It can be found in the streets of Cairo, hence the name, and in many Islamic
decorations.

Figure 1: Cairo tiling

There have been 15 types of such pentagons found so far, but it is not clear whether
this is the complete list. We will look at the properties of these 15 types and then find
a complete list of equilateral convex pentagons which tile the plane – a problem which
has been solved by Hirschhorn in 1983.

1Maria Fischer completed her Master of Mathematics at UNSW Australia in 2016.
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Archimedean/Semi-regular tessellation

An Archimedean or semi-regular tessellation is a regular tessellation of the plane by
two or more convex regular polygons such that the same polygons in the same order
surround each polygon. All of these polygons have the same side length. There are
eight such tessellations in the plane:

# 1 # 2 # 3

# 4 # 5 # 6

# 7 # 8

Number 5 and number 7 involve triangles and squares, number 1 and number 8 in-
volve triangles and hexagons, number 2 involves squares and octagons, number 3 tri-
angles and dodecagons, number 4 involves triangles, squares and hexagons and num-
ber 6 squares, hexagons and dodecagons. Number 4 is also one of the many tilings that
can be found throughout the Spanish city of Seville. Clearly, Archimedean tessellations
are not monohedral.
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Monohedral tiling with triangles, quadrilaterals and hexagons

In tiling, we are particularly interested in monohedral tilings, which is a tessellation of
the plane in which all tiles are congruent; it has only one prototile.

A triangle is a polygon with three sides and all triangles tessellate. To see that they
do, take an arbitrary triangle and rotate it by 180◦ about the midpoint of one of its
sides. It then becomes a parallelogram, which is a polygon with four sides, hence a
quadrilateral.

To see that all quadrilaterals tessellate, take an arbitrary quadrilateral with angles
A, B, C and D and rotate it by 180◦ about the midpoint of one of its sides. To build up
a tessellation, repeat to rotate about the midpoint of other sides. We observe that the
angles around each vertex are exactly A, B, C and D. Since the sum of the angles in
a quadrilateral is always 360◦, there are no gaps or overlaps, so all quadrilaterals tes-
sellate. Hence, all triangles and quadrilaterals tessellate. Note though, all triangles are
convex, but the tessellation with quadrilaterals applies to convex and concave quadri-
laterals. We can see that the angles play a key role in tessellation, as they in some way
have to add up to 360◦.

The regular hexagon also tiles the plane. Its angles are 120◦ each, so any three
angles add up to 360◦ and hence close up at a vertex (honeycomb pattern). Other than
the triangle or quadrilateral, there are only three types of monohedral convex hexagon
tilings. With angles A, B, C, D, E and F arranged anticlockwise and sides a, b, c,
d, e and f where b for example denotes the side between A and B, the types are the
following2.

Type 1: b = e, B + C +D = 360◦.

Type 2: b = e, d = f, B + C + E = 360◦.

Type 3: a = f, b = c, d = e, B = D = F = 120◦.

Type 1 Type 2 Type 3

2B. Grünbaum and G. C. Shephard, Tilings and Patterns (1987), W. H. Freeman and Company, New
York, 472–518 (Chapter 9)
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Theorem 1. No polygon with more than 6 sides can tessellate.

PROOF. Let n be the number of sides of the polygon. When we look at the tessellation
of the plane with convex tiles, it is easy to observe that at least three tiles have to meet
in one vertex. Hence, the average of the angles of these tiles cannot be greater than
120◦. We further know that the sum of the inner angles of an n−gon is 180 (n− 2),
hence the average is 180(n−2)

n
. Now, let n > 6. Then

180 (n− 2)

n
= 180

(
1− 2

n

)
> 180

(
1− 2

6

)
= 120,

which is a contradiction.

Tiling with pentagons

The regular pentagon does not tessellate, as each of the angles is 108◦ which is not a
divisor of 360. However, there are other kinds of pentagons which tile the plane. We
call the angles of a pentagon A, B, C, D and E, arranged anticlockwise and the sides
a, b, c, d and e where b is the side between A and B and so on. A vertex of one of the
polygons is also a vertex of the tiling and we call the valence of a vertex the number of
edges at the vertex.

Below is an overview of the tilings which have been discovered so far. They are
classified into types and we state when and by whom they have been found. We say
that types are distinct if they have different sets of conditions on angles and sides of a
pentagon such that each set of conditions is sufficient to ensure that a pentagon with
these conditions exists, and that at least one tiling of the plane by such a pentagon ex-
ists. Many distinct tilings can exist for pentagons of a given type.

Type 13, 1918 Reinhardt

D + E = 180◦

B

C

DE

A

Type 2, 1918 Reinhardt

C + E = 180◦

d = a

B

C

DE

A

3Types 1 – 5 in [K. Reinhardt, Über die Zerlegung der Ebene in Polygone, Dissertation, Universität
zu Frankfurt a.M. (1918)]
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Type 3, 1918 Reinhardt

A = C = D = 120◦

a = b
d = c+ e

A

a

B
b

C

c

D

dE
e

Type 4, 1918 Reinhardt

B = D = 90◦

b = c
d = e

B

c

C

d

D

e

E
a

A
b

Type 5, 1918 Reinhardt

A = 60◦

D = 120◦

a = b
d = e B

c
C

d

De
E

a

A
b

Type 64, 1968 Kershner

B +D = 180◦

2B = E
a = d = e
b = c A

b B

c

C
dD

e

E
a

Type 7, 1968 Kershner

B + 2E = 360◦

2C +D = 360◦

b = c = d = e
B

c C

d

D

e

E

a

A b

4Types 6 – 8 in [R.B. Kershner, On paving the plane, American Mathematical Monthly 75 (1968), 839–
844]
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Type 8, 1968 Kershner

2B + C = 360◦

D + 2E = 360◦

b = c = d = e
A b B

c

C

d

D

e

E

a

Type 105, 1975 James

A = 90◦

B + E = 180◦

B + 2C = 360◦

a = b = c+ e A b B

c

C

d

De
E

a

Type 9, 1976 Rice

2A+ C = 360◦

D + 2E = 360◦

b = c = d = e
A

b
B

c

C
d

D

e

E
a

Type 11, 1976 Rice

A = 90◦

2B + C = 360◦

C + E = 180◦

2a+ c = d = e
A b B

c
C

d

D
e

E
a

Type 12, 1976 Rice

A = 90◦

2B + C = 360◦

C + E = 180◦

2a = d = c+ e A
b

B

c

C

d

D
e

E

a

5Types 9 – 14 in [D. Schattschneider, Tiling the plane with congruent pentagons, Math. Mag. 51
(1978), 29-44]
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Type 13, 1976 Rice

B = E = 90◦

2A+D = 360◦

2a = 2e = d
A b B

c
C

d

D

e

E

a

Type 14, 1985 Stein

A = 90◦

2B + C = 360◦

C + E = 180◦

2a = 2c = d = e A b B

c
C

d

D

e
E

a

Type 156, 2015 Mann/McLoud/Von Derau

A = 150◦, B = 60◦

C = 135◦, D = 105◦

E = 90◦

a = c = e
b = 2a

A b B

c

Cd

D

e

E
a

Finding pentagonal tilings intuitively and systematically

We now want to have a look at how pentagonal tilings can be found. One way is
through the Archimedean tilings we have seen earlier. Taking the duals (take the center
of each polygon as the new vertex and join the vertices of adjacent polygons) of the
three Archimedean tilings whose vertices are of valence 5, number 5, number 7 and
number 8, gives us a pentagonal tiling, as seen below.

(a) Cairo tiling (b) House tiling (c) Floret tiling

Figure 6: Archimedean tilings and their duals

6A. Bellos, Attack on the pentagon results in discovery of new mathematical tile, The Guardian (11
Aug 2015)
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But the Cairo tiling can also be discovered in other ways. By layering two hexagonal
tilings of which one is at right angles to the other, the grid we get is the Cairo tiling. We
can also find the Cairo tiling by dissecting a square into four congruent quadrilaterals
and then joining the dissected squares together. Another way to discover pentagonal
tilings from tilings by congruent convex pentagons is by dissecting each hexagon into
two or more congruent pentagons. The House tiling, for example, can be found by
experimenting – taking a tiling with squares and replacing one of the straight lines
with a zig-zag line.

The first five types which Reinhardt found in 1918 are the only types that can gen-
erate a tile-transitive tiling. Tile-transitive means that its symmetry group acts transi-
tively on the tiles. Kershner left out any assumption of tile transitivity. He only looked
for tilings which were either edge-to-edge or in which every tile was surrounded by
six vertices of the tiling. However, James found a tiling, Type 10, which was not edge-
to-edge and consisted of tiles which are surrounded by 5 or 7 vertices. For this, he dis-
sected a regular octagon into four congruent pentagons by perpendicular lines through
its center. Marjorie Rice studied the corners of the tilings and analysed conditions on
the angles. She found over forty different tilings of which one had not been discovered
by then, Type 9. This showed that Kershner, though their searches were similar, was
mistaken in eliminating the possibility of this type of edge-to-edge tiling.

For each pentagon there exists a tiling containing a minimal block of congruent
pentagons. This minimal block has the property that the tiling consists of congruent
images of this block and it can be mapped onto another congruent block by an isometry
of the tiling. We say a tiling is n-block transitive when the minimal such block contains
n pentagons. A tile-transitive tiling is hence a 1-block transitive tiling. Kershner’s
tilings are 2-block transitive tilings and we observe that each block is surrounded by
six other blocks. Hence, these blocks are topological hexagons. We can see again that
bisecting hexagons in hexagonal tilings can lead to pentagonal tilings. James’ tiling is
3-block transitive and is also a topological hexagon. However, the pentagonal tiling of
Type 9 by Rice is different. It is also 2-block transitive but the blocks are topological
quadrilaterals since each block is surrounded by 4 blocks. This is rather surprising
since the bisection of a quadrilateral cannot result in pentagons. Rice then observed
that some of these 2-block transitive tilings can also be seen as 4-block transitive tilings
which have the outline of two hexagons attached to each other. This is how Rice even-
tually discovered her other three tilings (Types 11-13). Type 14 is also 3-block transitive
and a topological hexagon and so is type 15. It is therefore assumed that a pentagon
tiles the plane only if there exists an n-block transitive tiling by that pentagon for n 6 3.
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Tiling with equilateral convex pentagons

In 1983, M. D. Hirschhorn and D. C. Hunt proved the following theorem7:

Theorem 2. An equilateral convex pentagon tiles the plane if and only if it has two angles
adding to 180◦, or it is the unique equilateral convex pentagon X with angles A,B,C,D,E
satisfying

• A+ 2B = 360◦

• C + 2E = 360◦

• A+ C + 2D = 360◦.

This implies that A ≈ 70.88◦, B ≈ 144.56◦, C ≈ 89.26◦, D ≈ 99.93◦ and E ≈ 135.37◦.

We can see that Type 1, 2, 4, 7 and 8 can be equilateral, where Type 1, 2, 4 and 8
have two angles adding up to 180◦ and Type 7 is the unique pentagon X .

PROOF OUTLINE. Only consider edge-to-edge tilings, as non-edge-to-edge tilings can
be transformed into edge-to-edge tilings.

Since we want the angles to match up such that there are no overlaps or gaps, we
need the angles to have the relation

αAA+ αBB + αCC + αDD + αEE = 360◦ (1)

with αA, αB, αC , αD, αE ∈ N+.
To ensure that our polygon is a convex pentagon, we need the condition that

180◦ > A,B,C,D,E > cos−1

(
7

8

) (
and cos−1

(
7

8

)
> 28◦

)
.

We therefore get

360◦ = αAA+ αBB + αCC + αDD + αEE > 28◦
E∑
i=1

αi

and so

12 >
E∑
i=1

αi .

Similarly,

360◦ = αAA+ αBB + αCC + αDD + αEE < 180◦
E∑
i=1

αi

7M. D. Hirschhorn and D. C. Hunt, Equilateral convex pentagons which tile the plane, Journal of
Combinatorial Theory, Series A 39 (1983), 1–18
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and so

3 <
E∑
i=1

αi .

This shows that there is only a finite set of relations.
Assume from now on that B is the largest angle and that A 6 C to avoid duplications
in the relations. Then, prove that

A 6 C 6 D 6 E 6 B . (2)

Further analysis of the geometry of an equilateral convex pentagon gives

108◦ 6 B < 180◦

180◦ − 1

2
B − sin−1

(
sin

(
1

2
B

)
− 1

2

)
> A > 180◦ −B + 2 sin−1

(
1

4
sin

(
1

2
B

))
D = cos−1

(
cosA+ cosB − cos (A+B)− 1

2

)
C = 270◦ −B − 1

2
D + θ

E = 270◦ −A− 1

2
D − θ

(3)

with

θ = tan−1

(
sinA− sinB

1− cosA− cosB

)
.

We observe that the angles D, C and E are determined by the angles A and B and
hence, an equilateral convex pentagon can be identified by a point in the AB-plane.
Further reductions,

cos−1

(
7

8

)
< A 6 108◦

108◦ 6 B < 180◦

60◦ < C 6 108◦

cos−1

(
1

4

)
< D < 120◦

108◦ 6 E < 180◦ ,

(4)

lead to only 220 solutions to (??). Of these, 13 do not actually equal 360◦, 107 do not
comply with (??), 6 are of Type 1 and 4 are of Type 2. This leaves 90 remaining relations,
of which 14 involve B. In 7 of these 14, we have αA > αB, so they can be eliminated.
We find that there are 54 pentagons which satisfy at least two relations including one
of the 7 that involve B. Only 3 of these sets of relations involve all 5 angles and only
one of them tessellates.

The tiling in this figure is a non-periodic tiling with an equilateral pentagon which
has two adjacent angles adding up to 180◦. It was discovered by Hirschhorn, published
together with the above theorem, and is therefore known as the Hirschhorn tiling.
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Figure 7:
The Hirschhorn tiling - a nonperiodic tiling with an equilateral convex pentagon

Tiling with convex pentagons with four equal-length edges
In 2005 and 2009, Sugimoto and Ogawa studied plane tilings with convex pentagons
which have four equal-length edges (a = b = c = d) and presented a perfect list of such
pentagons that tessellate. Again, we are just looking at edge-to-edge tilings8,9

1. A+B + E = 360◦, B = E 2. B +D + E = 360◦

3. A+B + C = 360◦ 4. 2C +B = 2E +A = 360◦

5. C +D + E = 360◦, C = 2B 6. 2E + C = 2B +A = 360◦

7. 2D +B = 2E +A = 360◦ 8. A+B + C = 360◦, C = 2D

9. A+B + C = 360◦, A = C 10. A+B + C = 360◦

11. C +D + E = 360◦ 12. B +D + E = 360◦

13. C +D + E = 360◦, C = 2A 14. B +D + E = 360◦, B = 2A

Summary

We saw that there exist eight semi-regular tessellations of the plane. When it comes to
monohedral tiling, it was easy to see that all triangles and all quadrilaterals tessellate
as well as three types of hexagons, including the regular hexagon. We listed all 15 types
of convex pentagons that have been found to tile the plane and saw that some of them
can be found intuitively, i.e. as duals of some semi-regular tilings, and systematically,
i.e. with analysing tile-transitivity or 2-block/3-block-transitivity. For an equilateral

8T. Sugimoto and T. Ogawa, Systematic study of convex pentagonal tilings. I: Case of convex pen-
tagons with four equal-length edges, Forma 20 (2005), 1–18

9T. Sugimoto and T. Ogawa, Errata: Systematic study of convex pentagonal tilings, II: tilings by
convex pentagons with four equal-length edges, Forma 25 (2010), 49
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convex pentagon to tile the plane, it has to have two angles adding to 180◦, or it is
the unique equilateral convex pentagon with A + 2B = 360◦, C + 2E = 360◦ and
A+C + 2D = 360◦. Five of our 15 types can potentially be equilateral. Finally, we saw
a complete list of pentagons with four equal-length edges which tile the plane.

Feeling inspired?

Richard James, a computer scientist, and Marjorie Rice, with no more than high school
maths skills, demonstrate that anyone can contribute to solving the only remaining
problem of monohedral polygonal tiling of the plane. So, becoming famous may never
be easier – simply find a new pentagonal tiling or prove that there are not more than 15.
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