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Fibonacci numbers and the golden ratio

Robert Schneider1

Abstract
In this expository paper written to commemorate Fibonacci Day 2016, we dis-

cuss famous relations involving the Fibonacci sequence, the golden ratio, contin-
ued fractions and nested radicals, and show how these fit into a more general
framework stemming from the quadratic formula.

1 Fibonacci numbers

The Fibonacci numbers are an interesting sequence of integers discovered by the promi-
nent medieval mathematician Leonardo Fibonacci, related to the shapes of flower petals
and tree branches, the birth rates of rabbits, and other natural phenomena, that shows
up in many places in mathematics—you can even find the sequence in Pascal’s trian-
gle [2]. The nth Fibonacci number Fn is defined for n = 0 and n = 1 by

F0 = F1 = 1 ,

and for n ≥ 2 by
Fn = Fn−1 + Fn−2 . (1)

For example, we have

F2 = F1 + F0 = 1 + 1 = 2

F3 = F2 + F1 = 2 + 1 = 3

F4 = F3 + F2 = 3 + 2 = 5 ,

and so on. When you define a sequence of numbers like this, building up the nth term
from the previous terms, it is called a recursive sequence, and an equation like (1) that
produces the sequence is called a recursion relation.

Recursion relations can lead to all sorts of lovely and intricate patterns, by plugging
the terms back into themselves in creative ways. For example, the reader might like to
try taking the definition (1) above, and repeatedly using the observation

Fn = Fn−1 + Fn−2

= Fn−1 + (Fn−3 + Fn−4)

= Fn−1 + Fn−3 + (Fn−5 + Fn−6)

and so on, to show the following fact.
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Proposition 1. If N is an odd number, then

FN = F0 + F2 + F4 + F6 + · · ·+ FN−1 .

So “Fodd” can be written as the sum of all the smaller Fibonacci numbers of the form
“Feven”. For instance, F5 = 8 can be written as

F5 = F0 + F2 + F4 = 1 + 2 + 5 .

How about if N is an even number above? The reader is encouraged to experiment
with (1) to answer this question, and to discover other Fibonacci relations.

2 The golden ratio

It is well known that the Fibonacci numbers are connected to another famous number,
the golden ratio ϕ, which is related to the shapes of pineapples, seashells, and other
objects in nature, as well as to fractals and other self-similar mathematical objects [2].
The golden ratio—studied since the time of Euclid—is equal to the larger of the two
roots2 of the polynomial

x2 − x− 1 . (2)

The quadratic formula gives the exact value3

ϕ =
1 +
√
5

2
= 1.6180 . . . .

A beautiful fact is that ϕ is related to its own reciprocal by a very simple formula.

Proposition 2. The golden ratio is equal to its own reciprocal plus 1:

ϕ = 1 +
1

ϕ
. (3)

Proof. Notice from expression (2) that ϕ2 − ϕ− 1 = 0 implies

ϕ2 = 1 + ϕ .

Now divide both sides of this equation by ϕ, to finish the proof. �

Proposition 2 gives us another kind of recursion relation. Observe that ϕ is present
on both the left-hand side and in the denominator on the right. So we can plug the
entire right-hand side of (3) (which is equal to ϕ) back into itself in place of the ϕ in the
denominator:

ϕ = 1 +
1

1 + 1
ϕ

.

2The quadratic formula says that the roots, or “zeros”, of Ax2 +Bx+ C are given by −B±
√
B2−4AC
2A .

3Interestingly, the other root 1−
√
5

2 is equal to −1/ϕ.
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There still is ϕ in the denominator on the right-hand side, so we can repeat this substi-
tution, and repeat it again, any number of times:

ϕ = 1 +
1

1 + 1
1+ 1

ϕ

= 1 +
1

1 + 1
1+ 1

1+ 1
ϕ

= 1 +
1

1 + 1
1+ 1

1+ 1

1+ 1
ϕ

= · · ·

These stacked fractions-within-fractions are called continued fractions, and the numbers
making up the fraction are called coefficients. Notice that at every stage, the left-hand
side does not change: the continued fraction is still equal to ϕ. Proceeding in this
manner forever, we get a very famous formula.

Proposition 3. We can write the golden ratio as an infinite continued fraction with all the
coefficients equal to 1:

ϕ = 1 +
1

1 + 1
1+ 1

1+ 1
1+···

.

In the next section we will use this formula to show how ϕ is related to the Fi-
bonacci sequence. The interested reader is referred to Hardy and Wright [1] for more
information about continued fractions.

3 Golden Fibonacci ratios

The connection between the Fibonacci numbers Fn and the golden ratio ϕ is this.

Proposition 4. The ratio Fn

Fn−1
approaches ϕ as n increases.

From the very beginning of the Fibonacci sequence we see that the ratio Fn/Fn−1

oscillates around ϕ = 1.6180 . . ., getting closer and closer to the golden ratio:

F1/F0 = 1

F2/F1 = 2

F3/F2 = 3/2 = 1.5

F4/F3 = 5/3 = 1.6666 . . .

F5/F4 = 8/5 = 1.6 (which is getting pretty close to ϕ already)

Skipping up the sequence just a few terms, we have

F10/F9 = 89/55 = 1.6181 . . . ,

which is indeed a very close approximation to 1.6180 . . . (and it keeps getting better).
It is easy to see why this is true, taking a recursive approach. Using the definition (1)

of the nth Fibonacci number, we can rewrite this ratio as

Fn

Fn−1

=
Fn−1 + Fn−2

Fn−1

= 1 +
Fn−2

Fn−1

= 1 +
1

Fn−1/Fn−2

. (4)
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By exactly the same principle, we can rewrite

Fn−1

Fn−2

= 1 +
1

Fn−2/Fn−3

,
Fn−2

Fn−3

= 1 +
1

Fn−3/Fn−4

,

and so on, and substitute these one after another for Fn−1/Fn−2 in the right-hand side
of equation (4):

Fn

Fn−1

= 1 +
1

Fn−1/Fn−2

= 1 +
1

1 + 1
Fn−2/Fn−3

= 1 +
1

1 + 1
1+ 1

Fn−3/Fn−4

= . . . .

Eventually we run out of Fibonacci numbers to put in the denominator, and end up
with

Fn/Fn−1 = 1 +
1

1 + 1
1+ 1

1+···+ 1
F1/F0

= 1 +
1

1 + 1
1+ 1

1+···+1

, (5)

where the final coefficient on the right is 1 because F1/F0 = 1. Noting that the con-
tinued fraction on the right side gets longer and longer as n increases (the number of
coefficients increases proportionally), we see that as n approaches ∞, the continued
fraction in (5) gets closer and closer to the infinite continued fraction in Proposition 3,
which equals ϕ.

That it turns out to be the exact number approached by ratios of consecutive Fi-
bonacci numbers, which are interesting in their own right, is another intriguing prop-
erty of ϕ.

4 Nested radicals

We want to point out one other beautiful (and exotic-looking) property of the golden
ratio involving square roots, i.e., “radicals”. The equation ϕ2 − ϕ − 1 = 0 implies
ϕ2 = 1 + ϕ; taking the square root of both sides leads to the following relation.

Proposition 5. The golden ratio is equal to the square root of itself plus 1:

ϕ =
√

1 + ϕ . (6)

Viewing this as a recursion relation, just as with the continued fractions previously,
we can now repeatedly substitute the entire right-hand side of (6) for the ϕ under the
radical on the right:

ϕ =

√
1 +

√
1 + ϕ =

√
1 +

√
1 +

√
1 + ϕ =

√
1 +

√
1 +

√
1 +

√
1 + ϕ = · · · .

These roots-within-roots are called nested radicals, the more obscure cousins of contin-
ued fractions. Continuing in this fashion forever, we can write ϕ as an infinite nested
radical containing only 1s, like the continued-fraction representation in Proposition 3.

So that we have the expressions all in one place, we collect this observation and our
previous formulas for ϕ in the following amazing statement.
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Proposition 6. The golden ratio is equal to

ϕ =
1 +
√
5

2
= 1 +

1

1 + 1
1+ 1

1+ 1
1+···

=

√
1 +

√
1 +

√
1 +
√
1 + · · · .

In the next section, we will write a very similar system of equations for the roots of
any quadratic polynomial with rational coefficients.

5 The quadratic formula and beyond

Here we will see there is a more general framework containing the previous results
about the golden ratio, Fibonacci numbers, continued fractions and nested radicals—
all going back to the quadratic formula.

Now, the ± sign in the quadratic formula yields two roots, a “plus” root and a
“minus” root. For rational numbers a and b, let ϕ(a, b) denote the “plus” root of the
polynomial

x2 − ax− b . (7)

Then the quadratic formula gives the exact value4 for this number:

ϕ(a, b) =
a+
√
a2 + 4b

2

The golden ratio is the special case ϕ = ϕ(1, 1). In fact, these numbers ϕ(a, b) possess
many of the nice properties enjoyed by ϕ. For instance, it follows from (7) that

ϕ(a, b)2 − aϕ(a, b)− b = 0 .

Then similar steps to those we applied to ϕ yield a pair of familiar-looking equalities.

Proposition 7. We can write ϕ(a, b) in the following ways:

ϕ(a, b) = a+
b

ϕ(a, b)
(so long as ϕ(a, b) 6= 0 in the denominator)

=
√

b+ aϕ(a, b)

Notice how the case a = b = 1 reduces to Propositions 2 and 5. Using these two
identities, and following the exact steps that proved the corresponding equations for ϕ
previously, we can generalize Proposition 6 as follows. We omit the proofs, however,
as you might enjoy working out the details yourself.

4We can use the “minus” root a−
√
a2+4b
2 = a − ϕ(a, b) = −b/ϕ(a, b) for similar results to those that

follow, but with some ± sign changes. The reader is encouraged to work this case out, too.
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Proposition 8. The number ϕ(a, b) is equal to

ϕ(a, b) =
a+
√
a2 + 4b

2
= a+

b

a+ b
a+ b

a+ b
a+···

=

√
b+ a

√
b+ a

√
b+ a

√
b+ · · · .

We can also define a generalization of the Fibonacci sequence that connects with
ϕ(a, b). Let us define Fn(a, b) by

F0(a, b) = 1, F1(a, b) = a ,

and for n ≥ 2 by
Fn(a, b) = aFn−1(a, b) + bFn−2(a, b) . (8)

The usual Fibonacci numbers are the special case Fn = Fn(1, 1). It turns out these
Fn(a, b) behave similarly to Fn, as we see in the following statement.

Proposition 9. The ratio Fn(a,b)
Fn−1(a,b)

approaches ϕ(a, b) as n increases.

This proposition follows from the definition (8) with the observation

Fn(a, b)

Fn−1(a, b)
=

aFn−1(a, b) + bFn−2(a, b)

Fn−1(a, b)
= a+

b

Fn−1(a, b)/Fn−2(a, b)
, (9)

exactly like the proof of Proposition 5, so that after repeatedly using (9) we end up with

Fn(a, b)

Fn−1(a, b)
= a+

b

a+ b
a+ b

a+···+ b
F1(a,b)/F0(a,b)

= a+
b

a+ b
a+ b

a+···+ b
a

.

As n increases, the far right side of this equation looks more and more like the infinite
continued fraction in Proposition 8; that is, more and more like ϕ(a, b).

What if we define F0(a, b) to be a different number from 1? What if we change
F1(a, b) too? Does this affect Proposition 9? And what if we use more than two terms in
the recursion relation (8), for instance, if we define Fn(a1, a2, a3, . . . , ak) using k terms?
Is there a special number ϕ(a1, a2, a3, . . . , ak) associated with such a sequence, as ϕ(a, b)
is with Fn(a, b)? The reader is encouraged to experiment with Fibonacci-like sequences,
and also to check out important variations on the Fibonacci numbers, such as Lucas
numbers (see [1]), that produce other interesting relations.
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