
Parabola Volume 53, Issue 1 (2017)

On the density of Friedman numbers

Michael Brand1

1 Introduction

1.1 When is a number not a number?

Nowadays, at the age of the Internet and the smart-phone, one is constantly reminded
of the fact that information of all types, from video clips to encyclopedia articles, can be
(and, indeed, is) encoded in bits and bytes. A string of bits, however, can be thought of
as essentially being a natural number: just add a leading “1” and read it out in binary.
Putting these two facts together, we see that we are surrounded by numbers, each of
which represents some piece of information.

If you are reading an electronic version of this article, the article itself is stored as
a number. The software that reads it is a number. The operating system that runs
the software is a number. The compiler that compiled these is a number and the log
files that each of these generates as they function is a number. Interestingly, the page
numbers that you see in this article are, themselves, coded as part of the file storing the
paper, so they, too, are stored as a number, but it is a different number than the page
number that you see. This is a case of a number representing another number.

While these facts are clear today, in the 21st century, in 1931, when Kurt Gödel
published his Incompleteness Theorem [6], this was one of several quantum leaps that
the theorem introduced: math can be described by numbers.

The way to describe math by numbers is, essentially, the way this document is
stored electronically. After all, this document contains a mathematical discussion, so it
is, itself, math described by a number. Gödel’s insight was that if math analyses num-
bers and math can be described by numbers, then math can analyze math. By invoking
a technique known as Quining, Gödel managed to elicit an equivalence between the
math doing the describing and the math being described, leading to his conclusion of
incompleteness.

Six years later, when Alan Turing proved the Halting Theorem [13], he was doing
much of the same, but instead of diagonalizing over math, he was diagonalizing over
software: if software can manipulate numbers and software can be described by num-
bers, then software can manipulate software. The Halting Theorem is the result of an
equivalence elicited between the software doing the manipulation and the software
being manipulated.

1Michael Brand is Associate Professor at the Faculty of Information Technology, Monash Univer-
sity. His popular maths puzzle webpage Using your Head is Permitted has just celebrated its 10 year
anniversary, and his first novel has just appeared, here.

1

https://www.brand.site.co.il/riddles/usingyourhead.html
https://www.amazon.com/Valkyries-Michael-Brand-ebook/dp/B06XGY9WMF


These examples belong to the peaks of modern mathematics; they are the Olympus-
dwellers. Far below them, there is another class of numbers that describe themselves,
but which do so solely for your amusement. These are the narcissistic numbers.

Narcissistic numbers are numbers that can be computed from their own digits.
There are many types of narcissistic numbers (see, e.g., [12]), and they differ by what
computation operations we allow on their digits, as part of the process of calculating
back the original number.

In spectacular contrast to the central place that the works of Gödel and Turing hold
in modern math, narcissistic numbers have been all but driven out. Even the great
mathematician G.H. Hardy, renowned for his stance that math for its own sake is math
at its best, drives a hard line against the study of narcissism. He writes [7]: “These are
odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is
nothing in them which appeals much to a mathematician.”

And yet, occasionally, the study of narcissistic numbers does yield a result that is,
clearly, mathematical rather than recreational. This paper deals with one such result.
It regards one class of narcissistic numbers, known as Friedman numbers.

1.2 Meet the Friedmans

Friedman numbers are numbers that can be computed from their own digits, each
digit used exactly once, by use of the four basic arithmetic operations, exponentiation
and digit concatenation (as long as digit concatenation is not the only operation used).
Parentheses can be used at will. An example of a Friedman number is 25, which can be
represented as 52. An example of a non-Friedman number is any power of 10, because
no power of 10 can be expressed as the result of a computation using only arithmetic
operations and exponentiation if the initial arguments in the computation are a smaller
power of 10 and several zeros.

Friedman numbers form sequence A036057 of the Encyclopedia of Integer Sequences
[4]. They were first introduced by Erich Friedman in August 2000 [5], and the first
question to be asked about them was what their density is, inside the population of
integers. That is, if F (n) is the number of Friedman numbers in the range [1, n], what
is limn→∞ F (n)/n?

If we pick a number at random from a large enough range, chances are it will be
a composite number. The ratio of the number of composites to the number of primes
goes to infinity for large enough ranges. By contrast, odd numbers will remain 50%
of the population forever. The question asked is whether Friedman numbers vanish,
statistically speaking, like primes, whether they take over the entire population, like
composites, or whether they reach some middle ground, as in the case of even and odd
numbers, so that neither Friedmans nor non-Friedmans ultimately vanishes.

This is a question about how difficult or easy it is for a number to describe itself and
how powerful the basic operations are in this respect.

The empirical evidence was not in favor of Friedman numbers. Mike Reid, Ulrich
Schimke and Philippe Fondanaiche calculated the exhaustive list of all Friedman num-
bers up to 10,000 (there are 72 of them), and these were later supplemented by Erich

2



Friedman to an exhaustive list that ranges until 100,000. In total, there are 842 Fried-
man numbers smaller than 100,000, or 0.842%. This is not much higher than the 0.72%
among the first 10,000 numbers.

The infinite case was also studied. One infinite family of non-Friedmans was de-
scribed above: the powers of 10. Infinite families of Friedman numbers also began pop-
ping up. Ron Kaminsky proved the existence of infinitely many prime Friedman num-
bers. Brendan Owen and Mike Reid showed (independently) that any string of digits
can be the prefix to a Friedman number by appending to it a fixed suffix. (For example,
12588304 forms one such suffix. Any number N followed by the digits 12588304 is a
Friedman number and can be calculated from its own digits as N × 108 + 35482.) Erich
Friedman augmented this result by showing that any string of digits can be the suffix to
a Friedman number by preceding it with a prefix that is dependent only on the length
of the suffix. (For example, if XY is a two-digit number, then 2500XY = 5002 + XY is
a Friedman number. More generally, 25 × 10k is a prefix that can precede any k-digit
suffix to make a Friedman number.)

While these results, and many like them, were able to show that the density of
Friedman numbers is greater than 0, only less than one percent of the integers were
previously known to be Friedman numbers. This was consistent with the empirical
evidence gathered for the numbers up to 100, 000.

It was, therefore, quite a surprise when it was recently found [1] that Friedman
numbers have a density of 1 within the integers. That is, that even though infinite
families of non-Friedmans exist, ultimately, much like in the case of composites, if one
is to pick a number randomly from a large enough range it will in all likelihood be a
Friedman.

In this paper, we describe how this result is reached.
Readers wishing to know more about Friedman numbers and be updated as more

results are discovered about them can check out [5], which is Erich Friedman’s running
blog on the topic. The results quoted above are all documented in greater detail there.

2 The toolkit

Luckily, there was no need to reinvent the basic toolkit of techniques: the great works
of Gödel and Turing provide the recipe on how to elicit self-description in the form
desired by us, technically known as “indirect self-reference”. Two fundamental tools
are used in both proofs and are reused here: tuple-encoding and Quining.

2.1 Tuple encoding

One ingredient that seems essential in creating indirect self-reference is the insight that
information is not monolithic: a computer file storing a video clip is, in fact, storing a
multitude of frames, each of which can be restored and displayed; the pages of this ar-
ticle can be retrieved individually from the file that stores the paper in its entirety; and

3



so on. Somehow, one must provide a mechanism for representing in a single number
not just one, but several items, so that these can later be unambiguously decoded.

A good choice for the method chosen for encoding depends largely on the proper-
ties of the mechanism that does the encoding and the mechanism that does the decod-
ing, and the constraints of each. In storing the pages of this paper in a file, the computer
places each page’s description in a separate (and, for the most part, consecutive) set of
bytes. The reason for doing so is that this makes later access to the individual pages
much faster, by a machine that has byte-level read/write abilities, and which is faster
reading contiguously than by random access. Turing’s abstract tape machine operates
under very similar constraints, so his tuple-encoding, for the Halting Theorem, fol-
lowed along the same lines. By contrast, Gödel’s machinery worked with arithmetic
operations, so a much more convenient way for him to encode the tuple (x, y, z) was as
the number 2x3y5z. This allowed easy encoding and decoding for Gödel’s machinery,
but if the frames of a video clip on your computer had been stored in the same way,
decoding the video in real time would have been a technological impossibility.

For our present purposes, we also need something of a more arithmetic nature,
much like Gödel’s method, but actually using 2x3y5z would not work. The reason for
this is that such an encoding requires the use of “2”, “3” and “5”. These are extraneous
numbers, beyond what exists in the original tuple. We, on the other hand, are look-
ing for a method that would not require having any extraneous digits as part of our
formula. Ideally, it should use only x, y and z themselves.

A better encoding for us is the following. To encode {xi}ti=1, we use the number
enc({xi}ti=1) = x

x
x3...
2

1 . The fact that the number generated in this way is exceedingly
large should not bother us, as arithmetic operations work just as well on large num-
bers as on small ones. Far more important for us is that the encoding meets our design
criterion: it refrains from using any extraneous digits. It fails only on one point: decod-
ing is ambiguous. For example, the number 64 can encode, among other possibilities,
(2, 6), because 64 = 26, or (4, 3), because 64 = 43, or (8, 2), because 64 = 82.

Is this a major problem? It could be, but in our case there is a workaround. We
don’t actually need to be able to encode a tuple of any numbers. We can restrict our-
selves to use only a subset of the integers as integers that are encodeable as part of a
tuple. As long as we can ensure that this subset of the integers is sufficiently rich, the
construction will hold.

Specifically, we require of the integers inside tuples to be radical free [8]. An integer
x is radical free if it cannot be represented as x = yz with z > 1. With this restriction,
any integer can now be decoded unambiguously. For example, 64 encodes (2, 6) and
not any of the other possibilities. This is because 4 = 22 and 8 = 23 are not radical
free. Even the tuple length is now unambiguously decodeable as part of this encoding
(though this is a fact we will not be needing for the proof).

4



2.2 Quining

Indirect self reference is the ability of an entity (in this case a mathematical entity) to
refer to itself without use of an explicit self-reference. A powerful technique for do-
ing so was developed by Willard Van Orman Quine [10], and is sometimes referred
to as “Quining” after him. Though it was used by both Gödel and Turing for main-
stream mathematics, Quining was popularized in recreational mathematics / recre-
ational computer science by Bratley and Millo [3] who were the first to use it in order
to create a computer program that outputs its own code, a type of program that has
since received the name “quine”.

Typically, Quining requires several parts of the encoded entity to be repetitions of
the same information, encoded in different ways. A good example of this is in Quine’s
original use of the technique, where he utilized it to devise what is now known as
Quine’s paradox:

“Yields a falsehood when appended to its own quotation”
yields a falsehood when appended to its own quotation.

The sentence composing Quine’s paradox accomplishes self-reference by being com-
posed of two repetitions of the same phrase (“yields a falsehood when appended to its
own quotation”) that receive different interpretations because one is inside quotes and
the other not. In a sense, the first repetition can be viewed as “data” and the second
repetition, not in quotes, can be viewed as “instructions” showing how to manipulate
the data. Specifically, the instructions here are to append the data to itself, enclosing
the first repetition in quotation marks.

An example for a Friedman number that works like a quine is 10411041 = 1041 ×
(104 + 1). Here, too, repetition is used, with one repetition (“1041”) used as data to be
copied, and another repetition (“×(104+1)”) giving specific instructions regarding how
to manipulate the data to form the repetitions of the original number. Note, however,
that, unlike other forms of quines, Friedman-number quines do not require the various
repetitions to be encoded differently in order to be interpreted differently. There is no
need to place one repetition “in quotes” and the other not, in order to separate the
code from the data. This is because in Friedman numbers the choice of operations
used to construct the number from its own digits does not need to be encoded as part
of the number. It is information extraneous to the number, and it allows us to make a
different choice regarding which mathematical operations to use in conjunction with
each repetition.

For our proof, we require a Quining process that generates a large number of repe-
titions from the original data. If the data is s and the desired number of repetitions is r,
then this can be done by

10L(s)r − 1

10L(s) − 1
s ,

where L(s) is the digit length of s. We will use this L(x) notation throughout.

5



The resulting number, whose digits repeat the digits of s a total of r times, we will
denote [s]r. Another way to write [s]r will be

s.s. · · · .s︸ ︷︷ ︸
r times

.

This uses another notation that we will use throughout: the number x.y will be the
number whose digits are the concatenation of the digits of x with the digits of y.

3 Outline of the proof

We wish to prove the following claim:

Theorem 1. If F (n) is the number of Friedman numbers in the range [1, n], then

lim
n→∞

F (n)/n = 1 .

The proof itself can be divided into three steps.
In the first step, we introduce a new family of Friedman numbers. For this, let us

consider, again, the families of Friedman numbers already mentioned. Consider, first,
the result by Owen and Reid. They mapped out numbers, s, such that for any x it
is true that x.s is a Friedman number. For example, s = 12588304 is such a number,
because

x.12588304 = x× 108 + 35482 . (1)

We call such numbers Friedman suffixes, because if you add them as a suffix to any
number, you get a Friedman number.

Friedman, on the other hand, showed that for any number k there is a p such that
for any x of digit length k it is true that p.x is a Friedman number. For example, if we
pick k = 3, then one such p is 25000. For any x value that has exactly 3 digits 25000.x is
a Friedman number, because

25000.x = x + 50002 .

We say that p is a Friedman prefix, when placed at position k.
We will combine these results by constructing Friedman infixes. A Friedman infix

is a pair of numbers, (m, k), such that any number of the form x.m.y is a Friedman
number, if L(y) = k. In fact, we require of an infix to be more general still: we would
like to also support the case in which y, above, is a string of k digits beginning with
leading zeros, which would technically make it not a number. To write this out, we say
that for (m, k) to be a prefix we require that for any x and y and any t < k we have that
x.m.[0]t.y is a Friedman number, if L(y) = k − t.

In the first step of the proof, we will show how to generate such (m, k) pairs.
The second step of the proof is to show that this family of Friedman numbers is

quite rich. For an infix (m, k), let us call l = L(m) the infix length. What we will show
is that for any given infix length we can construct a large number of (m, k)-pairs with

6



distinct k values. In fact, for each value of l we utilize only a single m, and even so we
demonstrate that the number of (m, k)-pairs increases exponentially with l.

In the third step, we show that the rate at which the number of (m, k)-pairs increases
with l is sufficient to prove that F (n)/n converges to 1, completing the proof of the
theorem.

4 Step 1: Constructing a basic (m, k)-pair

Let us call the set of nonnegative integers that can be produced from the digits of a
number, x, by use of the four basic arithmetic operations, exponentiation and digit
concatenation by the name span(x). (It is tempting, at this point, to redefine Friedman
numbers as the set of integers, x, for which x ∈ span(x). However, such a redefinition
would not be correct: span(x) includes x for every x, because x can be produced from
itself by concatenating all of its own digits in order. In the definition of Friedman
numbers, such concatenation-only calculations are disallowed explicitly.)

In our construction, we will use m values of the form [s]r. This is because we want
to use Quining in order to generate self-reference.

Consider the span of such [s]r repetitions. It is not difficult to see that for any choice
of s > 0 one can describe any number i by the digits of [s]r, if one is only given a
suitable r. Here’s one way to do it.

If i = 0, use i = s− s. Otherwise, calculate i as
s

s
+ · · ·+ s

s︸ ︷︷ ︸
i times

.

This is not necessarily the smallest possible r for any particular i.
Armed with this knowledge, it is possible to construct (m, k) where m is of the form

[s]r and where s can be any number greater than 2. Here’s how to do this.
First, let us assemble some basic ingredients. These include the numbers 0, 1, 10

and L(s), all of which are constants and therefore all of which can be computed from
repetitions of s. Let’s call the number of repetitions needed for this assembly c0, c1,
c10 and cL(s), respectively. We will also use ck to denote some number satisfying that
k ∈ span([s]ck). Though we haven’t chosen k, yet, for any choice of k there will certainly
be possible choices for ck.

Next, we will pick r to be a multiple of s. The reason to do this is that if r = r′s,
then r ∈ span

(
[s]r

′) holds, because r can be represented as the summation of r′ copies
of s:

r = s + · · ·+ s︸ ︷︷ ︸
r′ times

.

Now, let’s put it all together to make a Quine, using the Quining technique from
Section 2.2: (

x× (0 + 10)L(s)r +
10L(s)r − 1

10L(s) − 1
s

)
× 10k + 0 + · · ·+ 0︸ ︷︷ ︸

t times

+y. (2)

7



(The reason we require the form (0 + 10)L(s)r in the expression is in order to enable
its replacement with 0× 10L(s)r for the case x = 0.)

This calculation certainly results in x.[s]r.[0]t.y, but does it use each one of its digits
exactly once, proving it to be a Friedman? To answer this, let us count which digits we
have already used, and how many of each.

Clearly, we have made exactly one use of each digit of x, of y and of t zeros. Addi-
tionally, we have used c0 + 2c1 + 4c10 + 3cL(s) + 1 + 2r′+ ck copies of s. What we need is
for c0 + 2c1 + 4c10 + 3cL(s) + 1 + 2r′+ ck to equal r. This we can do by reversing the order
in which we have been working so far: instead of first picking k and then calculating
a suitable ck, let us pick ck so as to make the equation hold, then pick as k any value in
span([s]ck). For this construction to work, only one piece of the puzzle is missing: we
need to show that the appropriate value for ck is positive. That is, we want to show

c0 + 2c1 + 4c10 + 3cL(s) + 1 + 2r′ < r . (3)

Let C = c0 + 2c1 + 4c10 + 3cL(s) + 1. By definition, r = r′s, so we can rearrange the
inequality to get r′ > C

s−2 . Now, all we need to do is to pick a sufficiently large r′, and
we’re done.

5 Step 2: Finding a large number of Friedman numbers
with a given infix length

In the previous section, we have shown a generic method of generating Friedman num-
bers based on an infix. This method tended to generate quite large Friedman numbers.
For example, one can use this method to show that ([3]90, 3) is a Friedman infix, and
[3]90.[0]3 is a Friedman number. This number, among the smallest producible by the
infix method, is almost on the order of a googol, which is to say that it is a number that
is still possible to write down, but far beyond any magnitude that we can comprehend
meaningfully. Clearly, there are a great many Friedman numbers out there that the
infix method cannot generate.

This begs the question of whether, in the process of narrowing our discussion to
just this family of Friedmans, we have not already thrown too many of them away
to reach our goal density of 1. The surprising truth is that we threw away only a
vanishing proportion of Friedmans, and, to drive the point further, in the next step we
will narrow the discussion even more and will throw away so many of them that the
smallest of the remaining Friedmans will be so large it will be impossible to write it
down in any conventional way.

For this, however, let us introduce some new notation. So far, we have considered
the ability to generate a number from a number, but, technically, what we needed was
to generate, for example, from [s]r three copies of L(s), four copies of 10, etc.. It is
therefore natural to also consider the ability to generate a tuple of numbers from a
number. We say that (L(s), L(s), L(s), 10, 10, . . .) ∈ tuplespan([s]r).

Formally, let the tuplespan of an integer, s, be the set of tuples

(x1, . . . , xn)

8



such that xi ∈ span(si) for each i = 1, . . . , n, where {si}ni=1 are numbers that result from
a partitioning of the digits of s.

Next, we will use a tool from coding theory. This is a reasonable move, because
coding theory deals with optimal ways for coding information. In our case, we wish
to encode a number by its own digits.

Let N(s) be the size of the largest subset of tuplespan(s) in which each tuple is
composed only of radical-free numbers and no two tuples are prefixes of each other, in
the sense that if x = (x1, . . . , xn) and y = (y1, . . . , ym) are both elements of the subset,
with n < m, then xi 6= yi for at least one of the values i = 1, . . . , n. We say, borrowing
terminology from coding theory, that the subset is a prefix code.

We began by narrowing the discussion from all the Friedmans to just those Fried-
mans that have an (m, k) infix, where m = [s]r with s > 2 and r = r′s. Let us now look
at just those remaining Friedmans for which s > 3 and k is a multiple of L(m).

Claim 1. The number of remaining Friedman numbers for any given s is in Ω(gr), where
g = N(s)

s−3
s . (This is just a fancy way of saying that there exists a positive constant C0 such

that, for any large enough r, s ≥ C0g
r.)

Proof. The main restriction introduced here is the fact that k must now be a multiple
of L(m). We can write k = k′L(m). Recall also that because m = [s]r

′s we have L(m) =
L(s)r′s. To introduce this restriction, we augment Equation (2), by replacing k in it by

k′ × L(s)× (s + · · ·+ s︸ ︷︷ ︸
r′ times

) .

If we follow, again, the reasoning that led us to Equation (3), but with the new formula,
we now get

c0 + 2c1 + 4c10 + 4cL(s) + 1 + 3r′ + ck′ = r ,

where k′ should be chosen from span(ck′). From this we know that choosing any k′ ∈
span

(
[s](s−3)r

′−C′) yields a Friedman number, where C ′ = c0 + 2c1 + 4c10 + 4cL(s) + 1.
To prove Claim 1, we must show that

lim
r→∞

∣∣∣span
(

[s](s−3)r
′−C′

)∣∣∣ g−r > 0 .

To show this, consider once again the tuple-encoding procedure enc(·) introduced
in Section 2.1. It ensures that any tuple of radical-free numbers can be encoded uniquely.
Specifically, tuplespan(s) includes N(s) distinct tuples composed of radical-free inte-
gers that form a prefix code, and consequently tuplespan

(
[s](s−3)r

′−C′) includes the con-
catenation of any (s− 3)r′ − C ′ of these tuples, creating a total of N(s)(s−3)r

′−C′ tuples,
all of which are distinct due to the prefix-code constraint. Each of these tuples can now
be encoded by enc(·) to form a distinct value of k.

The total number of possible k values is therefore at least

N(s)(s−3)r
′−C′ ∝ N(s)(s−3)r

′
= gr

′s = gr ,

proving the claim. 2

9



As can be seen, the constraints introduced by the claim regarding the values of s
and of k are of much smaller effect than the constraint introduced by the proof itself:
instead of looking at all of span([s]ck′ ), we have limited ourselves to just those k′ values
that can be generated from [s]ck′ through one particular method: tuple encoding, where
the basic building blocks are taken from N(s). Even so, we have managed to show that
the number of remaining Friedmans is exponential in r and have found g to be a lower
bound for the exponent.

6 Step 3: Bounding the density of Friedman numbers

Our last step is to show that even with all the restrictions introduced along the way,
we still have enough remaining Friedmans to produce a density of 1. To do this, we
continue in the same vein, restricting the set under discussion even further. Specifically,
we will now choose just one s to work with. Amazingly, that will already be enough
to reach the required density. However, for that, we must choose the value of s quite
carefully.

Claim 2. There exists a value of s, for which g = N(s)
s−3
s > 10L(s).

Proof. There are 5 radical-free integers that are 1 digit long, 82 radical-free integers
that are 2 digits long and 872 radical-free integers that are 3 digits long. Let us define
the constant s to be the digit concatenation of 13 copies of each of these radical-free
integers. The digit length of s, L(s), is 2785× 13 = 36205.

The specific s we have chosen is composed of 13 copies of each of the 959 radical-
free integers below 1000. If we partition s into these radical-free integers and form all
tuples of length 959 that can be created by distinct permutations of these numbers, then
we have G = (959× 13)!/13!959 distinct tuples. This number is a lower bound for N(s),
because the tuples, being of constant length, necessarily form a prefix code.

Either direct calculation or use of Stirling’s formula can be used to show that G is a
value with 36258 digits, whereas 10L(s) s

s−3 has only L(s) + 1 = 36206 digits. Therefore,
G > 10L(s) s

s−3 , and g ≥ G
s−3
s ⇒ g > 10L(s). 2

As a side note, for this particular s it is possible to choose c0 = c1 = c10 = cL(s) = 1,
and even more complicated expressions such as 10L(s) − 1 are still within the span of a
single copy of s. This should come as no surprise, because s contains over 2000 copies
of each of the ten digits. However, the present proof does not rely on the specific value
of any ci.

Armed with the claim, we can now prove Theorem 1 as follows:
Proof. In order to bound the density of Friedman numbers within the integers, con-
sider all (m, k)-pairs constructable using a specific infix length l = L(s)r, where k = k′l.

Let x be an integer chosen randomly and uniformly in [0, 10M), for some sufficiently
large M . We wish to bound from above the probability that x is not any of the Friedman
numbers corresponding to any of the (m, k)-pairs in the set.

For any given (m, k), this probability is 1−10−l, because exactly l digits are restricted
to a specific value. However, the probabilities relating to any two (m, k)-pairs with

10



the same l are independent, because the restricted digits do not overlap (hence our
requirement that k be divisible by l). This means that the total probability is bounded
by

(1− 10−l)C0gr , (4)

where C0 is the multiplicative constant in the Ω(gr) bound from Claim 1. Our goal is
to prove that this probability drops to zero as r tends to infinity.

When r tends to infinity, so does l, so the expression (1−10−l)10
l tends to 1/e, where

e is Euler’s constant. By taking the natural logarithm of the reciprocal of the expression
in Equation (4), we get 10−lC0g

r = C0

(
g/10L(s)

)r. We therefore need, equivalently, to
prove that this latter expression tends to infinity with r. However, Claim 2 already
showed that g > 10L(s), so we are done.

This proves that as n increases, the probability of an integer uniformly sampled in
[1, n] to be a Friedman number approaches 1, which is what we set out to prove. 2

7 But. . . is any of this math?

Having read this proof, one may wonder again about the quote by G.H. Hardy from
which we started, and which dismisses the study of narcissistic numbers offhand as
something “suitable for puzzle columns and likely to amuse amateurs”, but not a pur-
suit for serious mathematicians. Where does Hardy’s opposition come from, and is it
applicable in this case?

Well, perhaps the most obvious and most serious objection to the study of narcis-
sism within the realm of number theory is that narcissistic numbers are defined in
terms of their own digits. Because of this, the definition of a Friedman number is de-
pendent on the base of representation. What is a Friedman number in decimal notation
may not be a Friedman number in binary, and vice versa.

However, Gödel numbering can be said to exhibit similar properties: different rep-
resentation models can be used to encode tuples (or claims, or computer programs)
as integers. A quine program in a specific programming language is not necessarily a
quine in another programming language. The important fact, from a theoretical per-
spective, is that any general-purpose computer language allows the construction of a
quine.

In light of this, it may be said that the true test of the number-theoretic nature of
this type of study is in whether the mechanism of the proof and the ultimate conclu-
sions are agnostic to the representation model, rather than whether the representation
model itself is dependent on external factors. A representation-agnostic derivation can
be said to describe true number-theoretic properties, whereas one that is based on rep-
resentation can justifiably be referred to as “just a game with numbers”.

Going once again over the proof above, one can see that most of it made no use
whatsoever of the specific representation used. Only one part, namely the proof of
Claim 2, seems to be truly dependent of the base of representation, and even it only
requires that the number of radical-free numbers of certain digit lengths will be large
enough. Compare this with an argument such as the one given in Equation (1).

11



In [1], it was shown that even this slight dependence on the base of representation
can be omitted. In every base of representation, there is an s value, generated in much
the same way as was done here, that satisfies the equivalent of Claim 2 for that base of
representation, and therefore proves a density of 1 for the base-b Friedman numbers in
any base b.

To me, this seems like a convincing-enough argument that what is shown here is
not just mathematical techniques coming to the aid of a non-mathematical problem,
but rather true math. Would it have convinced Hardy? If I ever see him, I’ll ask.

8 Next stop: the nice ones and the vampires

We showed how the density of Friedman numbers can be computed in any base of rep-
resentation and have proven it to be 1. One can now continue to ask similar questions
regarding the density of several commonly-mentioned subsets of Friedman numbers,
which are interesting in their own rights. Among these are vampire numbers [9], first
introduced by Clifford A. Pickover, and “nice” Friedman numbers [11], introduced
by Mike Reid. Both sets restrict in some meaningful way the computation generating
the numbers in the set. A vampire number utilizes no exponentiation, whereas a nice
Friedman number requires the computation to retain the number’s original digit order.

In [2], it is shown that the infix method presented here can be made to work on
nice Friedman numbers (and prove a density of 1), but only for the binary, ternary and
quaternary nice Friedmans. It is not known whether the same method also works for
higher bases and, specifically, for the decimals (although, for bases of representation
higher than 27 the method is known to break down). For vampire numbers, the infix
method breaks down entirely, regardless of the representation basis.

Of course, a method that breaks down, just like a method not provably known to
work, is neither a proof that the density is 1 nor a proof of the opposite. The density of
neither nice Friedman numbers nor Vampire numbers is presently known.

References

[1] M. Brand. Friedman numbers have density 1. Discrete Applied Mathematics,
161(16–17):2389–2395, 2013.

[2] M. Brand. On the density of nice Friedmans. http://arxiv.org/abs/1310.2390,
Oct. 2013. [Online; accessed 10 October 2013].

[3] P. Bratley and J. Millo. Computer recreations: Self-reproducing automata. Software
– Practice & Experience, 2:397–400, 1972.

[4] E. Friedman. A036057. http://www.research.att.com/∼njas/sequences/
A036057. [Online; accessed 23 August 2010].

12

http://arxiv.org/abs/1310.2390
http://www.research.att.com/~njas/sequences/A036057
http://www.research.att.com/~njas/sequences/A036057


[5] E. Friedman. Problem of the month. http://www2.stetson.edu/∼efriedma/
mathmagic/0800.html, Aug. 2000. [Online; accessed 23 August 2010].

[6] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[7] G. Hardy. A Mathematician’s Apology. Cambridge University Press, 1940.

[8] R. Muller. A007916. http://www.research.att.com/∼njas/sequences/A007916,
Mar. 2010. [Online; accessed 6 October 2013].

[9] C. Pickover. Keys to Infinity, chapter Vampire Numbers, pages 227–232. Wiley,
New York, 1995.

[10] W. Quine. The Ways of Paradox and Other Essays, chapter The Ways of Paradox,
pages 1–21. Harvard University Press, Cambridge, 1966.

[11] D. Rattner. A080035. http://www.research.att.com/∼njas/sequences/A080035,
Mar. 2003. [Online; accessed 23 August 2010].

[12] C. Rose. Radical narcissistic numbers. Journal of Recreational Mathematics, 63:250–
254, 2004–2005.

[13] A. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265, 1937.

13

http://www2.stetson.edu/~efriedma/mathmagic/0800.html
http://www2.stetson.edu/~efriedma/mathmagic/0800.html
http://www.research.att.com/~njas/sequences/A007916
http://www.research.att.com/~njas/sequences/A080035

	Introduction
	When is a number not a number?
	Meet the Friedmans

	The toolkit
	Tuple encoding
	Quining

	Outline of the proof
	Step 1: Constructing a basic (m,k)-pair
	Step 2: Finding a large number of Friedman numbers with a given infix length
	Step 3: Bounding the density of Friedman numbers
	But…is any of this math?
	Next stop: the nice ones and the vampires

