Parabola Volume 53, Issue 1 (2017)

Integer Points on Conics and Continued Fractions

Peter G. Brown¹

Let us begin with a question:

Question. Find all the points with integer coordinates on the hyperbola $x^2 - 8xy + 11y^2 = 1$.

For example, (x, y) = (25, 4) works and so does (8057, 1292).

How do we find all such points? One approach to this is to use continued fractions, so we begin by recapping the basic theory.

Continued Fractions

A *continued fraction* is a way of representing rational and real numbers. We use the notation $[a_0; a_1, a_2, ...]$ to mean

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$
.

Thus, the continued fraction $3 + \frac{1}{1 + \frac{1}{5 + \frac{1}{7}}}$ is written as [3; 1, 5, 7]. This equals $3\frac{36}{43}$.

Rational numbers have terminating continued fractions, while quadratic irrationals (that is real numbers such as $5 + \sqrt{7}$ which satisfy a quadratic equation with integer coefficients) have eventually recurring continued fractions. Thus, for example,

$$\sqrt{3} = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2 + \dots}}}}$$

and is written as $[1; \overline{1, 2}]$.

If *N* is a non-square positive integer, then the continued fraction for \sqrt{N} has a special form:

$$\sqrt{N} = [a_0; \overline{a_1, a_2, \dots, a_2, a_1, 2a_0}]$$

For example, $\sqrt{54} = [7; \overline{2, 1, 6, 1, 2, 14}]$ and $\sqrt{53} = [7; \overline{3, 1, 1, 3, 14}]$. Such numbers are called *pure quadratic irrationals*.

¹Peter G. Brown is Senior Lecturer at the School of Mathematics and Statistics, UNSW Sydney.

By truncating a continued fraction at the *n*th term, we obtain a rational approximation, $\frac{p_n}{q_n} = [a_0; a_1, a_2, ..., a_n]$, called a *convergent* to the number represented by the continued fraction. For example, for the continued fraction $\sqrt{3} = [1; 1, 2, 1, 2, 1, 2, ...]$,

$$\frac{p_0}{q_0} = 1 = \frac{1}{1}, \qquad \frac{p_1}{q_1} = 1 + \frac{1}{1} = \frac{2}{1}, \qquad \frac{p_2}{q_2} = 1 + \frac{1}{1 + \frac{1}{2}} = \frac{5}{3},$$

and so on. There is a simple recurrence formula for finding p_n and q_n , namely

$$p_{n+1} = a_{n+1}p_n + p_{n-1}$$
$$q_{n+1} = a_{n+1}q_n + q_{n-1}.$$

Pell's Equation

It is well-known that certain of the convergents of the continued fraction for \sqrt{N} , where N is a positive non-square integer, provide solutions to the Pell equation $x^2 - Ny^2 = 1$. Here, for example, is a table showing the first few convergents for $\sqrt{3} = [1; \overline{1, 2}]$.

n	0	1	2	3	4	5	6	7
a_n	1	1	2	1	2	1	2	1
p_n	1	2	5	7	19	26	71	97
q_n	1	1	3	4	11	15	41	56
$p_n^2 - 3q_n^2$		1		1		1		1

and for *n* odd, $p_n^2 - 3q_n^2 = 1$.

Non-pure quadratic irrationals

One can consider the convergents also for non-pure quadratic irrationals such as $2+\sqrt{3}$ and ask whether the corresponding numerators P_n and denominators Q_n satisfy some related *Pell-type* equation. For example, the table showing the partial quotients for $2 + \sqrt{3} = [3; \overline{1, 2}]$ begins as follows:

n	0	1	2	3	4	5	6	7
a_n	3	1	2	1	2	1	2	1
P_n	3	4	11	15	49	56	153	209
Q_n	1	1	3	4	11	15	41	56

Taking the odd-numbered terms, what Pell-type equation do the pairs

$$(P_n, Q_n) = (4, 1), (15, 4), (56, 15), (209, 56), \dots$$

satisfy?

Matrix Representation for Convergents

If p_n, q_n are defined by

$$\begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} a_0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

then

$$\frac{p_n}{q_n} = [a_0; a_1, a_2, a_3, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

The proof of this is an easy induction and can be found in [1].

Theorem. Let N be a positive non-square integer. If $\frac{p_n}{q_n}$ is a convergent for \sqrt{N} such that $p_n^2 - Nq_n^2 = 1$ and if $\frac{P_n}{Q_n}$ is the convergent of $a + \sqrt{N}$, then

$$(P_n - aQ_n)^2 - NQ_n^2 = 1.$$

Proof. Write $\sqrt{N} = [b; a_1, a_2, \ldots]$.

Then, for some *n*, there is a partial quotient $\frac{p_n}{q_n}$ for \sqrt{N} such that $p_n^2 - Nq_n^2 = 1$, where

$$\begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} b & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Now, $a + \sqrt{N} = [a + b; a_1, a_2, \ldots]$, so

$$\begin{pmatrix} P_n \\ Q_n \end{pmatrix} = \begin{pmatrix} a+b & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} a+b & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} b & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} a+b & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -b \end{pmatrix} \begin{pmatrix} p_n \\ q_n \end{pmatrix} = \begin{pmatrix} p_n + aq_n \\ q_n \end{pmatrix} .$$

Hence, $P_n = p_n + aq_n$ and $Q_n = q_n$, and so

$$1 = p_n^2 - Nq_n^2 = (P_n - aQ_n)^2 - NQ_n^2.$$

Thus, in the example above, $2 + \sqrt{3} = [3; \overline{1, 2}]$ begins as follows:

n	0	1	2	3	4	5	6	7
a_n	3	1	2	1	2	1	2	1
P_n	3	4	11	15	49	56	153	209
Q_n	1	1	3	4	11	15	41	56
$(P_n - 2Q_n)^2 - 3Q_n^2$		1		1		1		1

since

$$(4 - 2 \times 1)^2 - 3 \times 1^2 = 1$$

(15 - 2 \times 4)^2 - 3 \times 4^2 = 1
(56 - 2 \times 15)^2 - 3 \times 15^2 = 1,

and so on.

The above proof shows that if $\frac{p_n}{q_n}$ is a convergent for \sqrt{N} such that $p_n^2 - Nq_n^2 = T$, then $(P_n - aQ_n)^2 - NQ_n^2 = T$, where $\frac{P_n}{Q_n}$ is the convergent of $a + \sqrt{N}$.

Back to the start

We return to the original question:

Question. Find all the points with integer coordinates on the hyperbola $x^2 - 8xy + 11y^2 = 1$.

We can complete the square and write $(x - 4y)^2 - 5y^2 = 1$ and, hence, we look at the convergents $\frac{P_n}{Q_n}$ of $4 + \sqrt{5}$ which has continued fraction $[6; \overline{4}]$.

n	0	1	2	3	4	5
a_n	6	4	4	4	4	4
P_n	6	25	106	449	1902	8057
Q_n	1	4	17	72	305	1292
$P_n^2 - 8P_nQ_n + 11Q_n^2$		1		1		1

Hence, every second convergent in the table above will produce a point on the hyperbola with positive integer coefficients, and conversely every point on the hyperbola with positive integer coefficients will be one of the convergents in the table above.

References

[1] R.F.C. Walters, *Number Theory: An Introduction*, Carslaw Publications, Sydney, 1986.