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Integer Points on Conics and Continued Fractions

Peter G. Brown1

Let us begin with a question:

Question. Find all the points with integer coordinates on the hyperbola x2− 8xy+11y2 = 1.

For example, (x, y) = (25, 4) works and so does (8057, 1292).
How do we find all such points? One approach to this is to use continued fractions,

so we begin by recapping the basic theory.

Continued Fractions

A continued fraction is a way of representing rational and real numbers. We use the
notation [a0; a1, a2, . . .] to mean

a0 +
1

a1 +
1

a2 +
1

a3 + . . .

.

Thus, the continued fraction 3 +
1

1 +
1

5 +
1

7

is written as [3; 1, 5, 7]. This equals 336
43

.

Rational numbers have terminating continued fractions, while quadratic irrationals
(that is real numbers such as 5 +

√
7 which satisfy a quadratic equation with integer

coefficients) have eventually recurring continued fractions. Thus, for example,

√
3 = 1 +

1

1 +
1

2 +
1

1 +
1

2 + . . .

and is written as [1; 1, 2].
If N is a non-square positive integer, then the continued fraction for

√
N has a spe-

cial form: √
N = [a0; a1, a2, . . . , a2, a1, 2a0] .

For example,
√
54 = [7; 2, 1, 6, 1, 2, 14] and

√
53 = [7; 3, 1, 1, 3, 14]. Such numbers are

called pure quadratic irrationals.
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By truncating a continued fraction at the nth term, we obtain a rational approxi-
mation, pn

qn
= [a0; a1, a2, . . . , an], called a convergent to the number represented by the

continued fraction. For example, for the continued fraction
√
3 = [1; 1, 2, 1, 2, 1, 2, . . .],

p0
q0

= 1 =
1

1
,

p1
q1

= 1 +
1

1
=

2

1
,

p2
q2

= 1 +
1

1 + 1
2

=
5

3
,

and so on. There is a simple recurrence formula for finding pn and qn, namely

pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1 .

Pell’s Equation

It is well-known that certain of the convergents of the continued fraction for
√
N , where

N is a positive non-square integer, provide solutions to the Pell equation x2−Ny2 = 1.
Here, for example, is a table showing the first few convergents for

√
3 = [1; 1, 2].

n 0 1 2 3 4 5 6 7
an 1 1 2 1 2 1 2 1
pn 1 2 5 7 19 26 71 97
qn 1 1 3 4 11 15 41 56

p2n − 3q2n 1 1 1 1

and for n odd, p2n − 3q2n = 1.

Non-pure quadratic irrationals

One can consider the convergents also for non-pure quadratic irrationals such as 2+
√
3

and ask whether the corresponding numerators Pn and denominators Qn satisfy some
related Pell-type equation. For example, the table showing the partial quotients for
2 +
√
3 = [3; 1, 2] begins as follows:

n 0 1 2 3 4 5 6 7
an 3 1 2 1 2 1 2 1
Pn 3 4 11 15 49 56 153 209
Qn 1 1 3 4 11 15 41 56

Taking the odd-numbered terms, what Pell-type equation do the pairs

(Pn, Qn) = (4, 1), (15, 4), (56, 15), (209, 56), . . .

satisfy?
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Matrix Representation for Convergents

If pn, qn are defined by(
pn
qn

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
an 1
1 0

)(
1
0

)
,

then
pn
qn

= [a0; a1, a2, a3, . . . , an] = a0 +
1

a1 +
1

a2+...

.

The proof of this is an easy induction and can be found in [1].

Theorem. Let N be a positive non-square integer. If pn
qn

is a convergent for
√
N such that

p2n −Nq2n = 1 and if Pn

Qn
is the convergent of a+

√
N , then

(Pn − aQn)
2 −NQ2

n = 1 .

Proof. Write
√
N = [b; a1, a2, . . .].

Then, for some n, there is a partial quotient pn
qn

for
√
N such that p2n −Nq2n = 1, where(

pn
qn

)
=

(
b 1
1 0

)(
a1 1
1 0

)
· · ·

(
an 1
1 0

)(
1
0

)
.

Now, a+
√
N = [a+ b; a1, a2, . . .], so(
Pn

Qn

)
=

(
a+ b 1
1 0

)(
a1 1
1 0

)
· · ·

(
an 1
1 0

)(
1
0

)
=

(
a+ b 1
1 0

)(
b 1
1 0

)−1(
b 1
1 0

)(
a1 1
1 0

)
· · ·

(
an 1
1 0

)(
1
0

)
=

(
a+ b 1
1 0

)(
0 1
1 −b

)(
pn
qn

)
=

(
pn + aqn

qn

)
.

Hence, Pn = pn + aqn and Qn = qn, and so

1 = p2n −Nq2n = (Pn − aQn)
2 −NQ2

n . 2

Thus, in the example above, 2 +
√
3 = [3; 1, 2] begins as follows:

n 0 1 2 3 4 5 6 7
an 3 1 2 1 2 1 2 1
Pn 3 4 11 15 49 56 153 209
Qn 1 1 3 4 11 15 41 56

(Pn − 2Qn)
2 − 3Q2

n 1 1 1 1

since

(4− 2× 1)2 − 3× 12 = 1

(15− 2× 4)2 − 3× 42 = 1

(56− 2× 15)2 − 3× 152 = 1 ,

and so on.
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The above proof shows that if pn
qn

is a convergent for
√
N such that p2n − Nq2n = T ,

then (Pn − aQn)
2 −NQ2

n = T , where Pn

Qn
is the convergent of a+

√
N .

Back to the start

We return to the original question:

Question. Find all the points with integer coordinates on the hyperbola x2− 8xy+11y2 = 1.

We can complete the square and write (x − 4y)2 − 5y2 = 1 and, hence, we look at the
convergents Pn

Qn
of 4 +

√
5 which has continued fraction [6; 4].

n 0 1 2 3 4 5
an 6 4 4 4 4 4
Pn 6 25 106 449 1902 8057
Qn 1 4 17 72 305 1292

P 2
n − 8PnQn + 11Q2

n 1 1 1

Hence, every second convergent in the table above will produce a point on the hyper-
bola with positive integer coefficients, and conversely every point on the hyperbola
with positive integer coefficients will be one of the convergents in the table above.
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