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An exploration of pandivisible numbers
Travis Dillon!

Our system for writing integers relies on ten symbols. When we write an integer
that is less than ten, the rule is easy: write the corresponding symbol; for example, we
all agree than “nine” should be expressed as “9”. However, for integers greater than
or equal to ten, the rules are more complicated. To write the number “twenty-three”,
we combine the symbols for two and three in a specific order so that we write “23”.
But what does this really mean? Well, our number system is based on powers of ten.
When we write 23, what we really mean is 2 x 10" + 3 x 10°. Because of this, we call
the number system we use “base 10”. This immediately raises the question of what
would happen if we used other numbers as bases. A condition usually imposed on
base systems is that digits in base n can only come from the set {0, 1,2,...,n — 1}. For
example, 123 in base 9 (which is usually written 123,) is

1239 =1 x 92 +2x 9" +3 x 9% =102y

Now that we have a generalized system for writing numbers, we can ask some
interesting questions. For example, a pandigital number is one that uses each numeral
from 1 to b — 1 exactly once. How many pandigital numbers are there in base v? Well,
we have b — 1 possible numerals for the first digit, and then b — 2 possible numerals for
the second, and so on, so there are (b — 1)! possible pandigital numbers in base b. This
isn’t exactly a result that is difficult to prove, but it is nevertheless an interesting result,
and we haven’t had to do much work in order to achieve it.

We can now define another interesting term. A number is called polydivisible in
base b if the first two digits, taken as a number in base b, are divisible by two, the first
three digits taken as a number in base b are divisible by three, and so on. For example,
you can easily check that 42325 is a polydivisible number. These classes become very
interesting when we combine them.

A pandigital polydivisible number is one that satisfies the criteria for both pandigital
and polydivisible numbers. To reduce wordiness, we will hereafter call these pandivis-
ible numbers. Our first observation is that there must be exactly b — 1 digits in a base
b pandivisible number; otherwise, it would not be pandigital. But then we come to a
surprising result: there are no pandivisible numbers in any odd base. We can prove
this by contradiction.

Suppose that in base 2n + 1, there exists a pandivisible number kik; . .. ks, , where
each k; represents a distinct digit. Then 2n | kjks ... ks, . This means that k&, . . .k,
leaves a remainder of 0 when divided by 2n. That is,

]{71]{?2 e ]{?Qn =0 (mod 27’L) .
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We can expand the left side, as we did for 1234 above:
2n+ 1" e+ 2n+ 1) kg + -+ (20 4+ 1) ks, =0 (mod 2n). (1)

For any natural number q, the Binomial Theorem states that

(2n +1)° = (g) (2n)° + (‘f) (2n)! + @) @2n)2 + - + (Z) (2n)°,

and we can see that this leaves a remainder of 1 upon division by 2n. This simplifies
(1) dramatically. It now becomes

]C1+]€2++/€2n50 (monn) (2)

Because this number is pandigital, every one of the digits must be a distinct number
from 1 to 2n, and each of these must be used, in some order. Thus, we see that (2) can
be simplified again to

14243+---+2n—-1)+2n=0 (mod 2n). (3)

We see that the left side of (3) is the sum of the first 2n natural numbers, so we finally

have
2n(2n +1)
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However, notice that 2n+1 and 2n are relatively prime. Additionally, » is not a multiple
of 2n. This means that n(2n+ 1) is not a multiple of 2n, and so (4) cannot be true, which
means that our assumption has led to a contradiction. Hence, there are no pandivisible
numbers in any odd base.

From here on, we assume that the base is even. Using the notation above, where
k., is the mth digit from the left of a pandivisible number in base b, we can see that
m and k,, must have the same parity. For kik, ...k, to be divisible by an even m, k,,
must be even. This means that if m is odd, then k,, must be odd as well, since all the
even numbers are already taken. Now we see that all pandivisible numbers must have
digits that alternate parity.

In fact, we can generalize this observation, to see thatif k&5 . . . k,_1 is a pandivisible
number in base b, then ged(m, b) | k,, . To see this, we again take the number k1% .. . &,
in base b. Now, for the number to be pandivisible, it must be that

=n(2n+1)=0 (mod 2n). 4)

kikoks ... kyn =0 (mod m).
This expands, as before, to become
b ey 40" kg 4+ D kg + 0%k, =0 (mod m).
Since ged(m, b) | m, we know that

by 40" kg 4 4 by + 0k, =0 (mod ged(m, b))

2



But ged(m, b) also divides b, so it also divides all perfect powers of b. Thus
km =0 (mod ged(m,b)),

which implies that ged(m,b) | k., , as desired. This has the interesting consequence
that if m | b, then m | k,,. This follows because if m | b, then ged(m,b) = m. A
particular application of this consequence occurs if we let m = 2. Note that m is an
integer because b is even. In this case, g | kbj2, but we also know that &,/ < b. There is
only one positive integer that satisfies both criteria: we must have ky/, = 2.

We can use these facts to search for pandivisible numbers. Obviously, if we just try
an exhaustive search through all pandigital numbers in base b, then there would be
(b — 1)! numbers to test. But we can immediately narrow our search, since we know
that ko = 2. If we searched through all pandigital numbers with this property, then
we would still test (b — 2)! numbers. We could instead use the property that the digits
of pandivisible numbers alternate parity. There are (3)! arrangements of odd digits
and (% — 1)! arrangements of even digits, so by applying the rule that digits alternate

parity, we only have to test 2 (4 — 1)!)* numbers.
To optimize the search further, we can combine these two rules. In the case where

b = 4n + 2, it must hold that % is odd. Thus, there are (% — 1)! ways to arrange the

remaining odd digits and (4 — 1)! ways to arrange the even digits, so (2 — 1)!)” num-
bers must be tested. If b = 4n, then £ is even, so there are (2)! ways to arrange the odd
digits and (3 — 2)! ways to arrange the remaining even digits, so (3)! (3 — 2)! numbers
must be tested. Of course, for specific values of b, the search can be optimized even
further by using the rule that ged(m, b) | k,,,. For example, in base 12, this rule implies
that 3 | ks, ke, k9. But kg = 6, since 6 is half the base, so we now know either that k3 = 3
and kg = 9 or that k3 = 9 and ky = 3 in any possible base 12 pandivisible number.

There is much about these numbers that is yet to be discovered. For example, an
even base does not guarantee the existence of a pandivisible number: none exist in
base 12. (The Appendix contains a table of the pandivisible numbers in selected bases.)
This raises the question of whether there are an infinite number of pandivisible num-
bers. Is there more hidden structure in these numbers? Additionally, what happens if
we change the conditions? Maybe we allow —1 as a digit, or perhaps we only allow
the digits to be odd. As you can see, this is a problem that is ripe for investigation, and
there appears to be much to explore.



Appendix

The following table lists all the pandivisible numbers in the even bases from 2 to 18,
inclusive. The odd bases have been omitted because no pandivisible numbers exist in
those bases, as we have proven.

Base Pandivisible Numbers
2 1
4 123, 321
6 14325, 54321
8 3254167, 5234761, 5674321
10 381654729
12 None
14 9C3A5476B812D
16 None
18 None




