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Solutions 1511–1520
Q1511 In a certain country (see Problems 1494 and 1502), every pair of towns is con-
nected by a highway going in one direction but not by a highway going in the other
direction. A town is called “central” if it can be reached from every other town either
directly, or with just one intermediate town.

(a) Show that if there are 8 towns in this country, then it is possible for every town to
be central.

(b) Show that the same is true for any number of towns except 2 or 4.

SOLUTION

(a) With a bit of trial and error, we see that the following will work:

from 1 2 3 4
to 2,4,5 3,5,8 1,4,6,7 2,5,6,7

from 5 6 7 8
to 3,6,8 1,2,7 1,2,5,8 1,3,4,6

You may easily check that this is a legitimate arrangement (there is never a high-
way both from x to y and from y to x) and that every town is accessible from every
other town in either one or two steps.

(b) We shall show that if it is possible to arrange highways in a country of n towns
(with n > 1) in such a way that every town is central, then the same is true in a
country of 2n towns.

Suppose that we have a suitable arrangement for a country with towns T1, . . . , Tn.
Consider a country with 2n towns; suppose that it is divided into two states called
A and B, and that the towns are called A1, . . . , An and B1, . . . , Bn, respectively.
(The people who choose town names in these countries are not very imaginative.)
Now construct highways as follows:

• highways in A are arranged as in the smaller country: that is, there is a high-
way from Ai to Aj if and only if there is a highway from Ti to Tj ;

• highways in B are arranged as in the smaller country but with directions
reversed: that is, there is a highway from Bi to Bj if and only if there is a
highway from Tj to Ti;

• the highway between Ai and Bj will be directed from Ai to Bj if i = j, and
from Bj to Ai if i 6= j.

Since every town in the smaller country is central, it is possible to get from any
town in A to any other town in A with at most one intermediate town; this prop-
erty is not changed by reversing the directions of all highways, so the same is true
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in B. We have to check that we can get to every town in B from every town in A

with at most one intermediate town, and likewise to A from B.

So, consider any town Bj . If i = j, then there is a direct connection Ai → Bj . If
i 6= j and there is a highway Bi → Bj , then we have Ai → Bi → Bj . If i 6= j

and there is no highway Bi → Bj , then Bj → Bi (remember that every pair of
towns is connected one way or the other), so Ti → Tj ; hence, Ai → Aj and we
have Ai → Aj → Bj . Thus, Bj can be reached from every Ai in at most two steps.

Finally, consider any town Ai. If j 6= i, then we have Bj → Ai. If j = i, then
choose a town Tk having a highway to Ti. (There must be such a town, otherwise
Ti would be inaccessible and hence not central: this is why we required n > 1.)
Therefore, Ak → Ai and, since k 6= j, we have Bj → Ak → Ai.

This shows that every town is central in the country of 2n towns. Since we know
that it is possible to make every town central in a country of 8 towns (above)
or 1, 3, 5, 7, . . . towns (Problem 1502, solution in last issue), doubling a sufficient
number of times (but not for n = 1) gives an arrangement in which every town is
central for any number of towns except 2 or 4.

Q1512 Find all solutions of the simultaneous equations

x2 + 4y2 + z2 = 20 and x+ yz = 6 .

SOLUTION Substituting x = 6 − yz into the first equation, expanding and collecting
the terms in z gives

(y2 + 1)z2 − 12yz + (4y2 + 16) = 0 . (∗)
In order to obtain (real) solutions for z, this quadratic equation must have a non–
negative discriminant

(12y)2 − 4(y2 + 1)(4y2 + 16) ≥ 0 .

A bit more algebra leads to
−(y2 − 2)2 ≥ 0 ;

since a square cannot be negative, the only possibility is y2 = 2. Substituting y =
√
2

back into (∗) gives

3z2 − 12
√
2 z + 24 = 0

which factorises as 3(z − 2
√
2)2 = 0. This provides the value of z and we calculate

x = 6− yz, giving the solution

x = 2 , y =
√
2 , z = 2

√
2 .

Setting y = −
√
2 and following the same procedure yields the only other solution

x = 2 , y = −
√
2 , z = −2

√
2 .
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Q1513 Divide the following array of numbers

1112122
2211342
1211211
1161315
4111331

into 11 connected regions, each containing numbers adding up to 6. A “connected
region” means a set of squares in which every square is joined to some other square
along an edge (not just a corner). No combination of numbers in a region may be used
more than once. For example, you might use one of the following regions:

1 1 2 2
2 1
1 2

1 1
2
2

However, you may not use more than one of them because they all contain the same
numbers.

SOLUTION First, we note that there are exactly 11 collections of positive integers
which add up to 6, namely,

6 = 5 + 1

= 4 + 2 = 4 + 1 + 1

= 3 + 3

= 3 + 2 + 1

= 3 + 1 + 1 + 1

= 2 + 2 + 2

= 2 + 2 + 1 + 1

= 2 + 1 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1 + 1 .

Therefore, we must use every one of these once each. Obviously, the 6 must go in a
region by itself. There are two options for 2 + 2 + 2 but if we take that in the top left
corner, then there is nowhere to obtain 4 + 2. The rest can be done by trial and error.

1112122
2211342
1211211
1161315
4111331
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Q1514 Find two (non-constant) polynomials whose product is the polynomial

f(x) = 1 + x1010 + x1011 + x1012 + x1013 + · · ·+ x2017 .

SOLUTION We have

f(x) = (1 + x+ x2 + · · ·+ x2017)− (x+ x2 + x3 + · · ·+ x1009)

= (1 + x1009)(1 + x+ x2 + · · ·+ x1008)− x(1 + x+ x2 + · · ·+ x1008)

= (1− x+ x1009)(1 + x+ x2 + · · ·+ x1008) ,

which shows the two required polynomials.

Q1515 Replace each letter by a different digit in the following long division in such
a way that the working is correct. You may assume (as stated in the article by Prof
Miklos N. Szilagyi earlier this issue) that no number begins with a zero.

A C H G A
–––––––––––––––––

H J A B C D E F G

H J
––––––

C D D

B F G
––––––

G G E

G A B
––––––

F C F

F B C
––––––

A C G

H J
––––––

D H

SOLUTION Because a number cannot begin with zero, A,B,C,D, F,G,H cannot be
zero. Since the first multiple (and the last) is equal to the divisor HJ , we have A = 1.
Next, the subtraction ABC − HJ = CD in lines 2–4 shows that B < H as, otherwise,
the difference would have three digits; the subtraction in lines 10–12 shows in the same
way that C < H . The maximum possible multiple of HJ is

9(HJ) = 9(10H + J) < 100(H + 1) ;

so any multiple of HJ has its hundreds digit at most H . Looking at lines 5, 7, 9 shows
that B,G, F < H .

We now know that A,B,C,D, F,G,H are all different and not zero, and H is the
largest of them: so H ≥ 7. Now the subtraction in lines 10–12 is

ACG−HJ = DH ;
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this shows that G is the final digit of H + J , which we write as G ≡ H + J . (If you
have studied modular arithmetic, then you will recognise that this is really congruence
modulo 10.) Similar ideas for other subtractions yield D ≡ 2G and C ≡ D + J and
F ≡ 2C and E ≡ B + C. The rest of the solution will be by trial and error. If we try
H = 7, then we know from above that J = 8, 9 or 0. We have

H J G D C

7 8 5 0 8
7 9 6 2 1
7 0 7 4 4

But each of these cases is impossible, either because there is a repeated digit or be-
cause there is a letter (other than A) which represents 1. Similar ideas eliminate all
possibilities except

H J G D C

8 9 7 4 3
9 3 2 4 7
9 4 3 6 0
9 5 4 8 3
9 8 7 4 2

Finally, lines 4 and 5 show that B < C; this, together with E ≡ B + C, leaves only the
first line as a possibility. So, we are left with the unique solution

H = 8 , J = 9 , G = 7 , D = 4 , C = 3 , F = 6 , E = 5 , B = 2 ,

and the reconstructed division is

1 3 8 7 1
–––––––––––––

8 9 1 2 3 4 5 6 7

8 9
–––––

3 4 4

2 6 7
–––––

7 7 5

7 1 2
–––––

6 3 6

6 2 3
–––––

1 3 7

8 9
–––––

4 8
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Q1516 Find the greatest possible area of a quadrilateral having sides 2, 3, 4, 5, in that
order.

SOLUTION Draw a diagonal of length
√
t to form triangles with sides 2, 3,

√
t and

4, 5,
√
t . Using Heron’s Formula for the area of a triangle in terms of its sides, the first

triangle has area

4A =
√

(

2 + 3 +
√
t
)(

2 + 3−
√
t
)(

2 +
√
t− 3

)(

3 +
√
t− 2

)

=
√

(25− t)(t− 1)

=
√
−25 + 26t− t2

=
√

122 − (t− 13)2 .

Doing the same sort of thing for the other triangle, the total area of the quadrilateral is
given by

4A =
√

122 − (t− 13)2 +
√

402 − (41− t)2 . (∗)
To maximise this area, we use the technique of Problem 1503(a) – see the solution in the
previous issue. The right hand side of (∗) is the vertical distance gained by the broken
line going from (13, 0) to (t, y1) and then to (41, y1 + y2), where the two line segments
have lengths 12 and 40. We maximise the height gain by making the two parts collinear,
giving a right–angled triangle with hypotenuse 52, horizontal side length 41− 13 = 28
and therefore vertical side length

√
522 − 282 =

√
80× 24 = 8

√
30 .

Therefore, the maximum area is 2
√
30 .

Q1517 A ball (which can be thought of as a point of zero dimension) is projected into
a “wedge–shaped billiard table” and continues to bounce off the sides as shown.

θ

(x0, y0)

If the ball starts at a distance x0 to the right and y0 above the vertex of the wedge, and
if the angle between its initial trajectory and the horizontal is θ, then find the closest
distance the ball attains to the vertex.

SOLUTION Imagine that instead of the wedge remaining fixed and the ball bouncing,
the ball keeps going and the wedge is reflected; and that this happens every time the
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ball hits a wall. The scenario looks like this:

Since, for the bouncing ball (ignoring any spin), the angle of incidence equals the angle
of reflection, the successive segments of the ball’s path form a straight line (shown in
red in the diagram). So, the answer that we are looking for is the shortest distance
from this line to the vertex. If we treat the vertex as the origin in the Cartesian plane,
then the line goes through (x0, y0) and has gradient tan θ; by a well–known formula,
the distance from the line to the origin is

|x0 sin θ − y0 cos θ| .

NOW TRY Problem 1527.

Q1518 Form a sequence of positive integers starting with 1, where each subsequent
number is the smallest positive integer which cannot be written as the sum of four or
fewer earlier numbers in the sequence, no earlier number to be used more than once.
Find the 2016th smallest number in the sequence.

SOLUTION The sequence is

1 , 2 , 4 , 8 , 16 , 31 , 46 , 61 , 76 , . . . :

that is, powers of 2 up to 16, and every 15th number thereafter. To prove this, it is easy
to check that the sequence starts 1, 2, 4, 8, 16. From now on, if n = 16 + 15k is the last
number in the sequence so far, then

n+ 1 , n + 2 , . . . , n+ 14
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can all be written as the sum of n together with three or fewer of the numbers 1, 2, 4, 8,
and therefore are not in the sequence. Consider m = n + 15 and suppose it can be
written as a sum of at most four previous terms. Note that m divided by 15 leaves
remainder 1; and the previous terms divided by 15 have remainders 2, 4, 8 once each,
and 1 lots of times. By trial and error, the only way to add up four or fewer of these
and get a remainder of 1 is to take a single term with remainder 1. That is, m is equal
to one of the previous terms in the sequence; but this is clearly not the case. Therefore,
m cannot be written as a sum of four earlier terms, and so it is the next term in the
sequence. Thus, as claimed, the sequence after 16 consists of every 15th term.

To answer the question: 16 is the 5th term, so the 2016th is 2011 terms further along
and it is

16 + 2011× 15 = 30181 .

Q1519 Suppose that x1, x2, . . . , xn are n positive real numbers, with n ≥ 3, and that
x1x2 · · ·xn = 1. Prove that

1

1 + x1 + x1x2

+
1

1 + x2 + x2x3

+ · · ·

+
1

1 + xn−1 + xn−1xn

+
1

1 + xn + xnx1

> 1 .

SOLUTION Consider the positive numbers

y1 = 1 , y2 = x1 , y3 = x1x2 , y4 = x1x2x3

and so on, finishing with

yn = x1x2 · · ·xn−1 and yn+1 = x1x2 · · ·xn .

Note that
xk =

yk+1

yk

for each k, and that yn+1 = 1 = y1. We have

1

1 + x1 + x1x2

+
1

1 + x2 + x2x3

+ · · ·+ 1

1 + xn + xnx1

=
1

1 + y2
y1

+ y2
y1

y3
y2

+
1

1 + y3
y2

+ y3
y2

y4
y3

+ · · ·+ 1

1 + yn+1

yn
+ yn+1

yn

y2
y1

=
y1

y1 + y2 + y3
+

y2

y2 + y3 + y4
+ · · ·+ yn

yn + y1 + y2

>
y1

y1 + y2 + · · ·+ yn
+

y2

y1 + y2 + · · ·+ yn
+ · · ·+ yn

y1 + y2 + · · ·+ yn

=
y1 + y2 + · · ·+ yn

y1 + y2 + · · ·+ yn

= 1 .
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Q1520 This puzzle was inspired by the “Plumber Game” which can be found at
www.mathsisfun.com/games/plumber-game.html.

A game is played on a 4× 8 grid of squares. The aim is to create a path from START
to FINISH by placing in some or all of the squares either a quarter–circle connection or
a straight connection. An example of a successful path is shown.

START

FINISH

Prove that a successful path must contain an odd number of straight connections.

SOLUTION To assist with the solution, give the grid a chessboard colouring as shown.

START

FINISH

The connections are on light and dark squares alternately; the path both starts and
finishes on a light square; so there must be an odd number of connections overall.
Each quarter–circle connection changes the direction of the path from horizontal to
vertical, or vice versa ; the path both starts and finishes vertically; therefore, there must
be an even number of quarter–circles. Hence, there are an odd number of straight
connections.
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