
Parabola Volume 53, Issue 2 (2017)

Charting new territory:
Formulating the Dalivian coordinate system

Olivia Burton and Emma Davis1

Numerous coordinate systems have been invented. The very first and most widely
known coordinate system is the Cartesian system. In this system, points are located by
their relative distance from perpendicular intersecting lines, called axes. The horizontal
axis is called the x-axis and the vertical axis is called the y-axis. All points, lines, and
figures are drawn in the coordinate plane formed from the intersection of the two axes.
The point where the two axes intersect is called the origin and is the starting point
for plotting points. The x-axis is positive in the area to the right of the origin and
negative in the area to the left of the origin, while the y-axis is positive in the space
above the origin and negative in the space below the origin. Points are plotted as
(x, y). Equations can be used to create ellipses, circles, and curved lines. Below are
various points plotted using the Cartesian system:

1Olivia Burton and Emma Davis are seniors at Williamston High School, Michigan, where they are
members of the Math and Science Academy.
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The polar coordinate system is perhaps the most widely known system other than
the Cartesian system. The polar coordinate system is used to plot a complex curve,
known as a spiral. The polar system plots points using coordinates involving an origin
point and axis lines. Every point in the system is described in terms of the directed
distance from the point to the origin, and the rotation the directed distance line makes
with the polar axis. A point is represented by the coordinate (r, θ). Here, θ is the angle
in radians from the polar axis and r is the distance from the pole along the directed
distance line. When the angle of rotation is positive, the directed distance goes in
a counterclockwise direction; when it is negative, the directed distance moves in a
clockwise direction [1]. Shown below is the relationship between r and θ.

Coordinate systems can also be used for mapping. Cylindrical coordinates are one
example of this. Cylindrical coordinates are polar coordinates represented in three
dimensions. Cylindrical coordinates use traditional polar coordinates and add a third
dimension, z, which is the distance from the point P in space along the z-axis to the
xy-plane. This is the same z as the z used to graph three-dimensional coordinates in
Cartesian space. Polar coordinates (r, θ, z) are shown below for the point P [2].
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The Dalivian coordinate system

There are many coordinate systems that differ greatly from Cartesian, polar, and cylin-
drical coordinate systems. In fact, there is only one requirement for a coordinate system
to exist; conversion formulas must allow the conversion from one system to another
and vice versa. The focus of our research is to develop a new way of graphing coor-
dinates in a coordinate plane. Our system, the Dalivian system, builds on ideas from
the Cartesian system. The name “Dalivian” is derived from the names of its creators.
We will create a system based on the intersection of two parabolas using the equa-
tions x = ay2 and y = bx2. The point (x, y) is the point of intersection between the
two parabolas in the Cartesian system. However, the point will be labeled (a|b) in the
Dalivian system. Here, a represents parabolas opening to the left and right while b
represents parabolas opening up and down.

The origin is always a point of intersection between the two parabolas. For this rea-
son, the point (x, y) will always be the non-origin intersection of the two parabolas and
(0, 0) will never be displayed on the graph. One of our focal points and major issues
will be to find conversion formulas between the Dalivian system and the Cartesian
coordinate system. These would allow us to easily convert to and from the Cartesian
system. We will also focus on graphing equations in our system. We do not know
what the graphs of equations will look like in the Dalivian system but we believe these
graphs will not resemble anything we have studied before.

Abstract

The Dalivian coordinate system presents a new way to graph points in a coordinate
plane. The traditional way to graph points, in the Cartesian plane, uses an x-axis and
a y-axis to plot points horizontally and vertically in a grid. The Dalivian system differs
from the traditional system in that points are graphed using the non-origin intersection
of two parabolas, x = ay2 and y = bx2. Points are labeled (a|b), with a representing
parabolas opening left and right and b representing parabolas opening up and down.
Our research mainly focused on identifying generalizations that can be made in the
Dalivian system, which later transitioned to proving a few of these generalizations.
An integral part of the research was developing conversion formulas. These allow for
a conversion between points in the Dalivian and Cartesian systems. They are
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Another major part of the research was creating graph paper so one could graph points,
labeled as (a|b), without having to convert to x and y coordinates. The graph paper in
the Dalivian system involves four sets of ten parabolas, traditionally starting at y = x2,
and becoming increasingly narrower. There are a total of forty parabolas featured on
the graph, with ten opening in each of the four directions.
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Methodology and Results

We began our research by attempting to find conversion formulas. These would allow
us to convert points from the Dalivian System to the Cartesian System, and vice versa.
We found our conversion formulas from the Dalivian system to the Cartesian system
through substitutions in the equations x = ay2 and y = bx2. It was found that the

formulas were x = 3
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1
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and y = 3
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. By solving for a and b in x = ay2 and y =

bx2, we developed our conversion formulas from the Cartesian system to the Dalivian
system, a = x

y2
and b = y

x2 . Having conversion formulas gave us an efficient way to
graph more complex equations.

Once we had the conversion formulas, we decided that instead of graphing each
equation by hand, we use parametric equations and our calculators. This is shown
below:

Here, T represents a and x3T represents b in the Dalivian system. Once the conver-
sion formulas are entered, one is able to input any Dalivian equation that is solved for
b in x3T and its graph will be displayed. This provided us with a simple and quick way
to make generalizations, as we could instantly view any equation’s graph.

We began by looking at the effects of negatives on graphs. What we found is that
when the sign of a is flipped, the graph reflects over the y-axis. When a negative is
applied to a whole equation, the graph reflects over the x-axis in the Dalivian system.

We confirmed that our quadrants are the same quadrants as in the Cartesian system.
For instance, when a and b are positive, a point is graphed in the upper right quadrant,
similar to when x and y are positive. A difference between the two systems is that no
point ever will be graphed on either axis in the Dalivian system. This is because the
intersection of two parabolas with vertices at the origin cannot cross an axis as neither
of the parabolas can touch an axis. The origin is a point of discontinuity in the Dalivian
system. When zero is plugged in for x or y in x = ay2 and y = bx2, there is no specific
value for a or b. In addition, when x, y, a, or b is equal to zero, our conversion formulas
produce a dividing by zero error.
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A difference between graphing in the Dalivian system and graphing in the Carte-
sian system is the way that numbers are labeled. Our numbers are labeled starting with
values farthest from zero, as opposed to numbers closest to zero as in the Cartesian
system. The Dalivian system’s parabolas are labeled this way because a and b values
closer to zero correspond to wider parabolas, so they will be farther from the axes than
more extreme a and b values with skinnier parabolas that stay closer to the axes.

We also examined the equation b = a+ c. The general shape of this graph is shown
below:

There are two shapesbeing made from this equation. When c increases, the shapes
move closer together. We found that the distance from the shape in the upper left
quadrant to the origin is

√
8/c22.

We then began creating graph paper for our system. We used Desmos [3], an on-
line graphing calculator, to make forty parabolas. All of these have their vertex at the
origin, with ten parabolas opening in each direction. For our original graph paper,
we used the equations x = ay2 and y = bx2. We started with a and b equal to 1, and
then changed the a and b values of each equation by one integer, stopping once a and
b were equal to 10 and −10 in the skinniest parabolas. We then experimented with dif-
ferently scaled graphs that allowed us to graph equations that either did not produce
integers for b when an integer was plugged in for a, or were outside of the range of
our graph. For instance, the equation b = a2 + a only shows up in the upper right and
upper left quadrants when graphed with integers, or in the upper right and lower left
quadrants when graphed with a between .1 and 1, but appears in all three quadrants
when graphed with fractions from (.1, 1) as well as integers from (1, 10).

Our newly formed graph paper shows the intersection points of parabolas, which
is what the Dalivian system is based on. Using the graph paper to show an equation is
quite simple. Plug in a number for a, then find the corresponding b value. After that,
find the parabola corresponding to the a value and the parabola corresponding to the b
value. Their intersection forms a point. Shown below is the graph paper where a and b
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are integers from (−10, 10) and the window ranges from (−1, 1) for both the x-axis and
the y-axis:

Having graph paper made it easier to see the symmetry present in each equation,
which is what we looked at next. We had a general idea of which equations were
symmetric and which ones were not, but we did not know definitively. After filtering
through the graphs we knew were unlikely to be symmetric, we began to use algebra to
prove which ones that showed signs of symmetry were actually symmetric. We found
that b = a2, b = a3, b = 1

a
, and b = ka were all symmetric. The equation b = a2 was a

reflection over the y-axis, while the other three were 180 degree rotations.

Shown above is a2
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Shown above is a3

One of our last steps in our research was to create proofs. We proved that the quad-
rant rules are the same in the Cartesian and Dalivian systems both in words as well as
in symbols. To prove in symbols, we plugged positive and negative x and y values into
our conversion formulas to determine if the corresponding a or b value would also be
positive or negative. x corresponds to a and y corresponds to b, as a represents num-
bers in the horizontal direction and b represents values in the vertical direction. For
instance, when a positive a and negative b were inputted into our conversion formu-
las, the result was a positive x and negative y.

We also proved the behavior of graphs at intercepts. The Dalivian system does not
have traditional intercepts since points can never be graphed on axes. Instead, the
graph moves from one quadrant to the next when a or b passes through zero. The
numbers a and b cannot be zero because no parabola has a width of zero. A graph
jumps quadrants instead of just producing a hole because, when a or b passes through
zero, a or b changes signs. This means that our graphs do not have a range of infinity,
since they only extend as far as the point closest to a = 0 or b = 0 before switching
quadrants.

Discussion and Conclusions

The Dalivian system is an example of mathematical theory. Since a theory is considered
to be a body of knowledge, mathematical theory can be considered an area of math-
ematical research. For that reason, the research that we undertook can be labeled as
a mathematical theory. The benefits of math theory include its enjoyability, challenge,
and satisfaction.

One of the areas of research that we failed to complete was defining a function. We
determined that a function can be defined the same way as in the Cartesian system;
each input has one output. However, the test for a function cannot be the vertical line
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test. Since a represents a sideways parabola, there can be many points that fall in a
vertical line but are on different parabolas and therefore have different a values. In
our system, one output for each input means that each a value can only have one b
value. This means that each sideways parabola can only have one intersection point.
We could not determine an effective way to test for a function in the Dalivian system,
so future research could focus on developing an efficient way to test for functions.
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