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Solutions 1521–1530
Q1521 Solve the equation √

x+ 20 +
√
x = 17 . (∗)

SOLUTION There are many ways to solve the equation but perhaps this is the sim-
plest: using a difference of two squares, we have

(√
x+ 20 +

√
x
)(√

x+ 20−
√
x
)

= (x+ 20)− x = 20 .

By dividing this by equation (∗), we get

√
x+ 20−

√
x =

20

17
,

and now subtracting this from (∗) gives

2
√
x = 17− 20

17
.

Therefore,

x =
(1

2

(

17− 20

17

))2

=
(269

34

)2

.

Q1522 Consider a circle with centre O = (a, b) and radius r, and a point P = (p, q)
which lies outside the circle. If Q and R are the two points on the circle such that PQ
and PR are tangent to the circle, find the equation of the line QR.

SOLUTION Let T = (x, y) be any point on the circle so that OT is perpendicular to PT .
By the “gradients of perpendicular lines” theorem, we have

y − b

x− a

y − q

x− p
= −1 ,

which can be rewritten as

(x− a)(x− p) + (y − b)(y − q) = 0 ;

and, since T is on the circle, we have

(x− a)2 + (y − b)2 = r2 .

Now subtract the previous equation from this one to get

(p− a)(x− a) + (q − b)(y − b) = r2 . (∗)

Now note that (i) this is the equation of a line since it has the form Ax + By = C for
certain constants A,B,C with A,B not both zero; and (ii) both P and Q lie on this line
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since both T = P and T = Q satisfy the conditions OT on the circle and OT ⊥ PT
(“tangent perpendicular to radius” theorem). So (∗) is our answer!

Comment. The “gradients of perpendicular lines” equation does not make sense if OT
is horizontal and PT is vertical, or vice versa ; but the following equation is still correct,
as you may easily check, and so our solution is still correct.

Q1523 Consider a list of the first n positive integers in some order; for example, if
n = 7, then we could have 5, 1, 6, 4, 7, 3, 2. We seek lists which have the following
further property: for every integer k from 1 to n, the sum of the first k numbers in the
list is a multiple of k. For instance, the above list does not have this property since the
sum of the first 5 numbers is 5 + 1 + 6 + 4 + 7 = 23 which is not a multiple of 5.

Find all lists with this property.

SOLUTION We shall use the notation a | b to indicate that a is a factor of b (that is, b is
a multiple of a).

First, we show that if we have a list of n numbers with the stated property, then n
cannot be even. Suppose that n = 2m. Applying the property to k = 2m, we have

2m | a1 + a2 + · · ·+ a2m .

But the numbers a1, a2, . . . , a2m are just 1, 2, . . . , 2m. Their order might possibly be dif-
ferent but this does not affect their sum. So

2m | 1 + 2 + · · ·+ 2m = m(2m+ 1)

and so 2 | 2m+ 1, which is impossible. Therefore, n cannot be even. . .

. . . and so n is odd, say n = 2m + 1. We shall show that this is also impossible if
m > 1. We have

n− 1 | a1 + a2 + · · ·+ a
n−1 = (a1 + a2 + · · ·+ a

n
)− a

n

so

2m | (2m+ 1)(m+ 1)− a
n
= 2m2 + 3m+ 1− a

n
,

and 2m | m+ 1− a
n
. But a

n
is a number from 1 to 2m+ 1, and so

−2m < −m ≤ m+ 1− a
n
≤ m < 2m ;

if m+1−a
n

is a multiple of 2m, then it must be zero, and so a
n
= m+1. Now, consider

the same kind of thing at the previous step:

n− 2 | a1+a2 + · · ·+ a
n−2 − (a1 + a2 + · · ·+ a

n
)− a

n
− a

n−1 ,

so

2m− 1 | (2m+ 1)(m+ 1)− (m+ 1)− a
n−1 = (2m− 1)(m+ 1) +m+ 1− a

n−1 ,
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and 2m− 1 | m+ 1− a
n−1. For the same reasons as above, we have

−(2m− 1) < −m ≤ m+ 1− a
n
≤ m < 2m− 1 ,

noting that 2m− 1 > m since m > 1; thus, a
n−1 = m+1, which is impossible since a

n−1

and a
n

are supposed to be different numbers.

The only remaining cases are n = 1 and n = 3, and it is easy to find by trial and error
all possible lists

1 and 1, 3, 2 and 3, 1, 2 .

Q1524 Find all positive integers n such that

1122n−1 + 2244n−1

is a factor of
1122n + 2244n .

SOLUTION It is obvious that n = 1 is a solution; now we look for solutions n ≥ 2. We
seek integers n and k such that

k(1122n−1 + 2244n−1) = 1122n + 2244n .

This can be written as k(1 + 2n−1) = 1122(1 + 2n), which leads to

(2244− k)(1 + 2n−1) = 1122 .

Therefore, 1+ 2n−1 is an odd factor of 1122; since 1122 = 2× 3× 11× 17, its odd factors
are

1 , 3 , 11 , 17 , 33 , 51 , 187 , 561 ;

however, not all of these can be equal to 1 + 2n−1, and we get only

1 + 21 = 3 , 1 + 24 = 17 , 1 + 25 = 33 .

So, 1122n−1 + 2244n−1 is a factor of 1122n + 2244n for n = 1, 2, 5, 6 .

Q1525 If the expression

(1− x)(1 + 2x)(1− 3x)(1 + 4x) · · · (1− (2n− 1)x)(1 + 2nx)

is expanded and its terms collected, then what is the coefficient of x2?

SOLUTION First multiply the terms together in pairs to get

(1 + x− 2x2)(1 + x− 12x2) · · · (1 + x− (2n− 1)(2n)x2) . (∗)

Now there are two ways to get x2 terms by multiplying out these quadratics:

• multiply x terms from two factors by 1 from every other factor;
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• multiply an x2 term from one factor by 1 from every other factor.

In the first case, the coefficient of each x2 expression will be 1; and the number of ways
in which we can get an x2 term in this way is the number of ways that we can choose
two factors from the n factors in (∗); that is, C(n, 2). Therefore, this is the coefficient of
x2 in the first case. In the second case, the coefficient of each x2 expression will be the
same as it is in (∗), and the sum of all these coefficients will be

−(1× 2)− (3× 4)− · · · − (2n− 1)(2n) .

To add this up, we shall use the formula for the sum of an arithmetic progression,
which you should know, and another useful formula which you may not know:1

12 + 22 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1) .

The coefficient that we need can be written

−(22 − 2)− (42 − 4)− · · · − ((2n)2 − (2n))

= −(22 + 42 + · · ·+ (2n)2) + (2 + 4 + · · ·+ 2n)

= −4(12 + 22 + · · ·+ n2) + 2(1 + 2 + · · ·+ n)

= −4
n(n + 1)(2n+ 1)

6
+ 2

n(n+ 1)

2
;

and so the total coefficient of x2 is

−4
n(n+ 1)(2n+ 1)

6
+ 2

n(n + 1)

2
+ C(n, 2)

= −4
n(n + 1)(2n+ 1)

6
+ 2

n(n+ 1)

2
+

n(n− 1)

2

= −n(8n2 + 3n + 1)

6
.

Q1526 Some questions about continued fractions – for basic information on these, see
Peter Brown’s article in the previous issue.

(a) Find the continued fraction for
√
23.

(b) Find the continued fraction for 1

3

√
11.

(c) Find the value of the continued fraction [1; 2, 3, 4].

SOLUTION

(a) We write
√
23 as an integer plus a remainder; do the same with the reciprocal of

the remainder; and keep going until the calculations repeat:

√
23 = 4 + (

√
23− 4)

1See also the Parabola article “Proof by picture: A selection of nice picture proofs”.
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1√
23− 4

=

√
23 + 4

7
= 1 +

√
23− 3

7

7√
23− 3

=

√
23 + 3

2
= 3 +

√
23− 3

2

2√
23− 3

=

√
23 + 3

7
= 1 +

√
23− 4

7
7√

23− 4
=

√
23 + 4 = 8 + (

√
23− 4)

Since the last remainder is one that we have seen before in the first step, the entire
calculation will repeat starting at the second step. Therefore,

√
23 = [4; 1, 3, 1, 8] .

Note that this expression has the “special form” referred to in Peter’s article for

the continued fraction of
√
N : the last number in the recurring section is twice the

initial number, and the previous part 1, 3, 1 of the recurring section is palindromic
(the same backwards and forwards).

(b) Using the same procedure,
√
11

3
= 1 +

√
11− 3

3
3√

11− 3
=

3
√
11 + 9

2
= 9 +

3
√
11− 9

2

2

3
√
11− 9

=

√
11 + 3

3
= 2 +

√
11− 3

3

and so √
11

3
= [1; 9, 2] .

(c) Write

β = [3; 4, 3, 4] = 3 +
1

4 +
1

3 +
1

4 + · · ·

.

Then

β = 3 +
1

4 +
1

β

from which we can evaluate β; and the number we want is

α = 1 +
1

2 +
1

3 +
1

4 + · · ·

= 1 +
1

2 +
1

β

.
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Calculations yield

β = 3 +
β

4β + 1
=

13β + 3

4β + 1
so

4β2 + β = 13β + 3 ,

and solving the quadratic equation gives the positive root

β =
3 + 2

√
3

2
.

Hence,

α = 1 +
β

2β + 1
=

3β + 1

2β + 1
=

4 +
√
3

4
.

Q1527 In Problem 1517 we considered a billiard ball being projected into a “wedge–
shaped table” as shown in the diagram.

θ

(x0, y0)

α

If the angle between the ball’s initial trajectory and the horizontal is θ, and the angle at
the vertex of the wedge is α, how many times does the ball hit the wedge?

SOLUTION As in the solution to Problem 1517, we imagine that instead of the wedge
remaining fixed and the ball being reflected, the wedge is reflected and the ball keeps
going in a straight line. The successive angles made by the ball as it “exits” a wedge
are 180− θ, 180− θ − α, 180− θ − 2α and so on, as shown in the diagram.

180− θ

180− θ − α

180− θ − 2α

180− θ − 3α

α
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Now, the “exit angle” after the ball hits the wedge for the kth time is 180− θ− (k−1)α;
and the ball will never hit the wedge again if this is less than or equal to the angle α of
the wedge. So, the number of hits is the smallest k such that

180− θ − (k − 1)α ≤ α ;

that is, the smallest k such that

k ≥ 180− θ

α
;

that is, (180− θ)/α, rounded to the nearest integer upwards.

Q1528 The first question should be easy; the second harder; the third harder still!

(a) Find the coordinates of three points P1, P2, P3 such that the distance between any
two of them is one unit. If the point M is equidistant from P1, P2, P3, then find the
distance MP1.

(b) The same, but for four points.

(c) The same, but for five points.

SOLUTION It is clear that we can take our three points to be the vertices of an equi-
lateral triangle. For example, let P1 = (0, 0) and P2 = (1, 0) and P3 = (a, b). Then, it is
easy to see that we need

a =
1

2
and a2 + b2 = 1 ,

so b2 = 3

4
, and so b =

√

3

2
, where we have chosen a positive value of b since only one

solution was asked for. Hence, P3 = (1
2
,
√

3

2
). Write M = (x, y); as M is equidistant from

P1 and P2, we have x = a = 1

2
, and then MP 2

1
= MP 2

3
. In other words,

x2 + y2 = (y − b)2 ,

so 1

4
= −

√
3 y + 3

4
, and y = 1

2
√

3
. Therefore, M = (1

2
, 1

2
√

3
). The distance from M to each

point is

MP1 =
√

x2 + y2 = 1
√

3
.

We can check this trigonometrically by noting that the angle ∠MP1P2 will be π

6
, so

y = 1

2
tan π

6
and MP1 =

1

2
sec π

6
.

To find four points with unit distance between any two, we must begin by taking
three of them to form an equilateral triangle as above, and then there is no way to
obtain a fourth point equidistant from all three. . .

. . . unless we go into a third dimension. So, let P1 = (0, 0, 0) and P2 = (1, 0, 0) and

P3 = (1
2
,
√

3

2
, 0) and P4 = (a, b, c). Then P4 must be directly above (or below if you like)

the point M from the previous question; so,

a =
1

2
and b =

1

2
√
3

and a2 + b2 + c2 = 1 .
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Hence, c2 = 2

3
, and c =

√

2
√

3
; thus, P4 = (1

2
, 1

2
√

3
,
√

2
√

3
). Let M = (x, y, z); then x = a = 1

2

and y = b = 1

2
√

3
and MP 2

1
= MP 2

4
. Hence,

x2 + y2 + z2 = (z − c)2 ,

so

z =
c2 − x2 − y2

2c
= 1

2
√

6
,

giving M = (1
2
, 1

2
√

3
, 1

2
√

6
) and MP1 =

√

x2 + y2 + z2 = 3

2
√

6
. To find five points all unit

distance apart. . .

. . . we need a fourth dimension! Let

P1 = (0, 0, 0, 0)

P2 = (1, 0, 0, 0)

P3 = (1
2
,
√

3

2
, 0, 0)

P4 = (1
2
, 1

2
√

3
, 1

2
√

6
, 0)

P5 = (a, b, c, d) .

As in previous parts, we shall need

a =
1

2
and b =

1

2
√
3

and c =
1

2
√
6

and a2 + b2 + c2 + d2 = 1 .

Hence, d2 = 5

8
, and d =

√

5

2
√

2
. Then, M = (x, y, z, w) with

x = a = 1

2
, y = b = 1

2
√

3
, z = c = 1

2
√

6

and MP 2

1
= MP 2

5
, so

x2 + y2 + z2 + w2 = (w − d)2 ,

and, hence,

w =
d2 − x2 − y2 − z2

2d
= 1

√

10
.

So, we have

P5 = (1
2
, 1

2
√

3
, 1

2
√

6
,

√

5

2
√

2
) and M = (1

2
, 1

2
√

3
, 1

2
√

6
, 1
√

10
) and MP1 =

√

19

2
√

10
.

Q1529 If x, y, z are real numbers such that

2x− 9y + 7z = 6 and 7x− 6y + 2z = 9 ,

then evaluate x2 + y2 − z2.
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SOLUTION We have two equations in three unknowns, and we can solve for two
unknowns in terms of the third. Taking 7 times the second equation minus twice the
first, and then 3 times the second minus twice the first gives

45x− 24y = 51 and 17x− 8z = 15 ;

therefore,

y =
15x− 17

8
, z =

17x− 15

8

and we have

x2 + y2 − z2 =
1

82
(

82x2 + (15x− 17)2 − (17x− 15)2
)

=
1

82
(

(82 + 152 − 172)x2 + 2(17× 15− 15× 17)x+ (172 − 152)
)

= 1 .

Q1530 Find all real numbers a, b, c such that a < b < c and

a+ b+ c = 5 , a2 + b2 + c2 = 15 , abc = 1 .

SOLUTION First note that

(a+ b+ c)2 − (a2 + b2 + c2) = 2ab+ 2ac+ 2bc

and so

ab+ ac+ bc =
(a+ b+ c)2 − (a2 + b2 + c2)

2
= 5 .

Therefore,

(x− a)(x− b)(x− c) = x3 − (a+ b+ c)x2 + (ab+ ac+ bc)x− abc

= x3 − 5x2 + 5x− 1

= (x− 1)(x2 − 4x+ 1)

= (x− 1)(x− (2−
√
3))(x− (2 +

√
3)) ;

the numbers a, b, c are the roots of this cubic: 1 and 2 −
√
3 and 2 +

√
3 . Since we are

given that a < b < c, we have the only solution

a = 2−
√
3 , b = 1 , c = 2 +

√
3 .
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