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Abstract

Communication is no longer private, but rather a publicly broadcast signal for
the entire world to overhear. Cryptography has taken on the responsibility of se-
curing our private information, preventing messages from being tampered with,
and authenticating the author of a message. Since the 1970s, the burden of se-
curing communication has largely rested on the RSA algorithm. Over time, tech-
niques to crack RSA have improved which has forced key sizes to increase in order
to maintain security. The size of keys is approaching infeasible, and one possible
alternative to RSA uses elliptic curves which have significantly smaller keys.

1 Introduction

Examples of cryptography can be found throughout history as far back as the Ancient
Greeks. Cryptography is used when there is a need to secure valuable information. The
digital revolution has resulted in half of the world communicating through computers
and the Internet [1]. As a result, the primary users of cryptography have shifted from
governments to anyone who uses the Internet. As of 2017, Chrome 56 actively warns
users when an Internet site is not secure [8]. Google’s goal is to have the entire web
transition to secure sites. The advent and advances in public key cryptography make
this possible.

Question 1. Investigate different encryption schemes in use on the Internet. You know that
you are on a secure website if the URL address begins with HTTPS versus HTTP. Many
browsers have a padlock icon to visually represent a secure connection. Click on the padlock
and investigate the details of the security being used. Find a website that uses RSA and one
that uses ECC encryption.

Question 1 provides evidence that RSA is the most widely used public key encryp-
tion scheme on the Internet. RSA was developed in the late 1970s, and its security is
based on the idea that factoring a number into primes is a “hard” problem. Because of
the RSA algorithm, research in factoring algorithms increased. As factoring techniques
improve, the security behind RSA becomes compromised. The result is that the size
of the keys used in RSA have increased exponentially. If this trend continues, then the
larger key sizes will result in computations that are infeasible for modern computers.

1Jeremy Muskat is an Associate Professor of Mathematics at Western State Colorado University, USA.
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Definition 1 (Key). A cryptographic key is a set of rules for changing plain text into en-
crypted cipher text. Keys are also used to decrypt cipher text back into readable plain
text. In the latter usage, the terminology “key” can be thought of as unlocking the
encrypted information.

Elliptic curves were introduced in cryptography as a tool used to factor composite
numbers in an effort to crack RSA [6]. The consideration of elliptic curves in cryptog-
raphy eventually led to a suggestion in the 1980s that they could also be used for en-
cryption [5, 7]. The benefit of Elliptic Curve Cryptography (ECC) is that the key sizes
are significantly smaller than the key sizes required for RSA of comparable security
level. A comparison is shown in Table 1.

RSA ECC
1024 160
2048 224
3072 256
7680 384

15360 512

Table 1: Bit lengths of keys for RSA and ECC with comparable levels of security

2 A crash course in cryptography

Definition 2 (Cryptography). Cryptography is the study of storing and transmitting
data in a format that only those for whom it is intended can read and process.

Caesar’s cipher is a nice example to get started with the basic concepts in cryptogra-
phy. Caesar’s cipher is a substitution cipher that shifts the standard alphabet by three
places. Table 2 shows a symmetric key that can be used to encrypt plain text into cipher
text and decrypt cipher text into plain text by reversing the process.

Plain text A B C D E F G H I J K · · · Y Z
Cipher text X Y Z A B C D E F G H · · · V W

Table 2: Caesar’s cipher symmetric key

Question 2. Use Table 2 to decrypt the cipher text Mxoxylix into plain text.

It is worth identifying some problems with the simple encryption scheme in Ques-
tion 2. First, it is easy to crack. If the cipher text is long, or the same key is repeatedly
used, then patterns can be identified using frequency analysis. Good encryption can
overcome this shortcoming by having the ability to generate multiple keys easily.
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Second, in order to decrypt (as in Question 2), the key must be transmitted along
with the cipher text. This requires an extra transmission or a pre-established key be-
tween parties. Good encryption should be concerned with generating keys, but also
should consider how to easily transmit the key. We will eventually describe the Elliptic
Curve Diffie-Hellman (ECDH) key exchange, an algorithm that uses elliptic curves to
transmit a key over an unsecured channel. ECDH key exchange establishes a private
key between two parties even if a third party adversary is observing their communica-
tion.

3 Security behind RSA

Caesar’s cipher provides evidence that encryption and decryption are straightforward
as long as a key is provided. A description of the RSA algorithm can be found in [2].
Instead of the algorithm, we focus on the security that protects RSA and use it to mo-
tivate the introduction of elliptic curves. All encryption is based on “hard” problems.

Definition 3 (One-way function). A one-way function f(x) is a function that is easy to
compute in the forward direction, yet difficult to compute in the other. To clarify, the
output f(x) of the function is easily determined from an input x. However, if given a
function value f(x), then it is hard to determine the value x.

The security of RSA is based on the following one-way function. Let p and q be
prime numbers greater than 2. Define f(p, q) = pq which is just usual multiplication.
When considering f in a cryptographic scheme, p and q are approximately a hundred
digits each. Attempting to answer Question 3 should clarify the idea behind f being a
one-way function.

Question 3. Use any method available. A computer algebra system like Mathematica is
recommended.

1. Let p = 2425967623052370772757633156976982469681
and q = 6847944682037444681162770672798288913849.
Determine f(p, q).

2. Find p and q where n = f(p, q) is equal to

1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139 .

The 100 digit composite number n in Question 3 is an example of a 330 bit key
used for RSA encryption. Cracking the encryption corresponds to finding the factors p
and q. The solution was given in 1991 and was the first solution in response to the
now-defunct RSA factoring challenge [11]. The most recent solution was in May of
2016 and factored a 704 bit key [11].
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1 Why “hard”?

Factoring is described as “hard” because there is empirical evidence of its difficulty.
However, the difficulty cannot be proven. The theory behind factoring is simple; the
difficulty lies in the length of the calculation. One approach to factoring a composite
number n is to check all possible divisors less than or equal to b

√
nc.

Question 4. Suppose that n = f(p, q). Show that either p or q is less than or equal to b
√
nc.

Question 4 provides a list that is guaranteed to contain a divisor of n. Consider the
value of n from Question 3, and suppose that it is possible to check a million divisors
per second. Completing the task of checking to see if 2|n, 3|n, 4|n, . . . , b

√
nc|n would

take 3.2 × 1037 years. Notice it doesn’t help much to assume you could check divisors
a million times faster.

There are however better factoring algorithms than the one described above [10].
Through the use of such algorithms along with parallel computing, we have seen a
768 bit key factored [11]. The result is an average of a 2048 bit key being used for RSA
encryption on the Internet to guarantee security. A natural assumption is that factoring
will continue to improve, resulting in a need for longer key bit lengths. The continued
growth in key sizes is not sustainable, and one possible solution can be found using
elliptic curves.

4 An introduction to elliptic curves

Definition 4 (Elliptic curves). An elliptic curve over R is the set of points (x, y) satisfying
an equation of the form y2 = x3 + ax+ b where x3 + ax+ b has no double roots.

Figure 1: The elliptic curve E : y2 = x3 + x+ 1 over R
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When an elliptic curve E is considered with one additional point O, an operation
can be defined on the set of points that behaves similarly to addition. The point O is a
point at infinity and acts the same way that zero does when considering the addition
of real numbers. The notion of O can be formalized but can be intuitively considered
as a single point that lies at the top and bottom of every vertical line. Figure 2 provides
a geometric interpretation of the operation on E. We will refer to the operation as
“addition”. To add two distinct points P and Q on E, first find the line that contains
both P and Q. This line will intersect E at a third point denoted P ∗ Q. Reflect P ∗ Q
over the x-axis to obtain P +Q. Figure 2 depicts the special cases in which P and Q are
not distinct and when the line between P and Q does not intersect E.

Figure 2: A geometric interpretation of addition on E : y2 = x3 + x+ 1.

Question 5. Consider the operation of addition that is defined on E in Figure 2.

1. Pick two distinct x-coordinates not shown in Figure 2. Find the corresponding points on
E and add them together. Verify that your new point satisfies the equation defining E.

2. Verify that the coordinates are correct in Figure 2 for the case of doubling P . Instead of a
secant line, use the tangent line at P .

3. Consider and point P on E. Verify geometrically that P +O = P and that−P +P = O
where −P is obtained by negating the y-coordinate of P .

4. A common additive property is that (P +Q) + R = P + (Q + R). Provide a geometric
example that shows this property fails if you replace + with ∗. This is the reason that the
reflection was necessary for defining the operation on E.

1 Elliptic curves over finite fields

Figure 1 depicts E : y2 = x3 + x + 1 over R. We denote the set of points in Figure 1
along withO as E(R) and use it to gain intuition on how to add points. Using E(R) for
cryptography is possible but the calculations are slow due to unwieldy coordinates. To
speed up calculations, we work over a finite field and modify our geometric interpre-
tation accordingly.
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Definition 5 (Finite field). The most common examples of finite fields are sets of integers
where the operation of addition and multiplication are calculated modulo a prime p.
That is, numbers are divided by p and we look at the remainders. Table 3 represents
the operation of addition and multiplication modulo the prime 5. The set of integers
{0, 1, 2, 3, 4} along with these operations are denoted as F5.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 3: Operations addition (+) and multiplication (·) modulo 5

Question 6. Modular arithmetic is often called clock arithmetic because of the “wrapping”
effect of a 12-hour clock.

1. Suppose that it is 9:00AM. Working on a 12-hour clock, what time will it be in 10 hours?
If you omit AM and PM from the question and answer, then your calculation is an example
of doing addition modulo 12.

2. Verify the boldface entries in Table 3 using arithmetic modulo 5.

3. In order to divide by nonzero elements of a finite field, consider division as the operation
that undoes the effect of multiplication. Dividing by x is equivalent to multiplying by the
element x−1 where x · x−1 = 1. Explain the following calculation 3/2 ≡ 3 ∗ 3 = 9 ≡ 4
mod 5.

4. Complete Table 4.

/ 1 2 3 4
1 1 2 3 4
2 1 4 2
3 1
4 1

Table 4: Division (/) modulo 5

Arithmetic modulo 5 allows us to consider solutions to equations representing el-
liptic curves over F5.
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Figure 3: A geometric interpretation of addition on E : y2 = x3 + x+ 1 over F5.

Question 7. Consider E : y2 = x3 + x+ 1 defined over F5 in Figure 3.

1. Verify that the eight finite points pictured in Figure 3 lie on E(F5). Show there are no
others.

2. Show that the slope of the line containing P (0, 1) and Q(2,−1) is 4 in F5. Verify the
coordinate found for P +Q in Figure 3.

3. There is no geometric interpretation of a tangent line in a discrete setting. Use the formal
rules of ordinary calculus to define a tangent line at P (0, 1). Show the tangent line has
slope 3, and use it to verify the coordinates found for 2P in Figure 3.

5 Security behind ECC

The security of ECC is based on the following one-way function. Let k ∈ Z be an
integer and consider a prime p > 3 and an elliptic curve E containing the point P .
Define g(P ) = kP = Q which is adding P to itself k-times on E. Consider Question 8
to familiarize ourselves with g.

P (0, 1) (2, 1) (3, 1) (4, 2)
2P (4, 2) (2,−1) (0, 1) (3,−1)
3P (2, 1) O (2,−1) (2,−1)
4P (3,−1) (2, 1) (4, 2) (0,−1)
5P (3, 1) (2,−1) (4,−2) (0, 1)
6P (2,−1) O (2, 1) (2, 1)
7P (4,−2) (2, 1) (0,−1) (3, 1)
8P (0,−1) (2,−1) (3,−1) (4,−2)
9P O O O O

Table 5: Scalar multiplication on E : y2 = x3 + x+ 1 over F5
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Question 8. Consider E : y2 = x3 + x+ 1 defined over F5.

1. Figure 3 demonstrates doubling P (0, 1). Verify the remaining entries in row 2 of Table 5
when the initial point P varies.

2. Table 5 contains half of the finite points on E. Explain how the fact that 2(−P ) = −2P
can be used to determine the doubles of the remaining points on E.

3. Verify the entries in rows four and eight (i.e powers of two) using the information about
doubling in Table 5.

4. Use the fact that −P +P = O to verify the entries in row 9, row 7, and row 5 of Table 5.

5. Verify the remaining rows using addition on the elliptic curve E.

6. Use Table 5 to solve the inverse of the one-way function. Given P (0, 1) and Q(2,−1)
determine k where kP = Q.

Question 8 is an example of how to crack the security behind ECC when working
over F5. We were able to calculate the inverse of g given specific points P and Q on E.
The ease of this can be analogously viewed with the security behind RSA. Revisit Ques-
tion 3 while replacing n = 323, and see how easy the inverse of f is to determine. The
difficulty of the inverse for both f and g is due to the size of primes you consider. In the
case of ECC, we increase the size of the prime p corresponding to the base field Fp. The
advantage with ECC is that the size of p required is much smaller than the correspond-
ing size of n in RSA with the same level of security. Attempting to answer Question 9
should clarify the idea behind g being a one-way function. Question 9 works over the
finite field F1223. Arithmetic in F1223 is analogous to arithmetic in F5, except that the
modulus is the prime number 1223.

Figure 4: E : y2 = x3 + x+ 1 over F1223 contains 1167 points

Question 9 (“Hard”). Consider E : y2 = x3 + x + 1 over F1223 in Figure 4. Given P (0, 1)
and Q(635, 1153) on E, determine k where kP = Q.
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The key size in Question 9 has bit length 11 corresponding to p = 1223. The recom-
mended key size for ECC on the web has bit length 224 [3]. Figure 4 loses all definition
with such a large prime so we do not use it for demonstrative purposes.

The answer to Question 9 is k = 421. To solve this by brute force, it would have
taken 421 additions of P to stumble upon Q. It is difficult to cut down the required
number of steps because multiples of P do not seemingly exhibit any pattern. Notice
the lack of discernable pattern in the first twenty multiples of P .

nP = {(0, 1), (306, 1069), (72, 611), (884, 527), (720, 943), (941, 796), (315, 848),
(452, 523), (903, 953), (935, 1099), (78, 755), (559, 1118), (579, 647), (426, 677),

(708, 977), (980, 562), (900, 582), (32, 935), (1054, 269), (1060, 428) . . . } .

The one-way function g should be easier to calculate than the 421 brute force steps
required to answer Question 9. A nice approach considers 421P in a base 2 expansion:

421P = 256P + 128P + 32P + 4P + P .

Now 421P can be calculated by computing 8 doubles and 4 additions.

6 Elliptic curve Diffie-Hellman key exchange

ECDH key exchange can be used on a public channel to set up a private symmetric
key which can be used to encrypt and decrypt transmissions during a communication
session. Literature often represents this by way of a story: Alice and Bob set up a secure
connection while an adversary Eve eavesdrops. In a modern context, a client connects
to a server through a network. The client needs to protect sensitive information being
submitted to the server. Also, the server guarantees that the information being sent to
the client has not been tampered with.

The ECDH key exchange begins by Alice and Bob individually selecting an integer
which each keep private. If Alice and Bob select 421 and 583 respectively, then they
calculate the points A(635, 1153) = 421P and B = (14, 1082) = 583P . One method to set
up a symmetric key is for Alice and Bob to exchange their respective x-coordinates over
the unsecured channel. Notice that if Eve intercepts this information, then she needs to
solve Question 9 to recover the private keys. In order to set up a symmetric key, Alice
and Bob both recover each other’s y-coordinates (or its negative; see Question 12).

Question 10. If Alice is provided E : y2 = x3 + x + 1 over F1223 and x = 14, then use a
computer algebra system like Mathematica to determine the two points on E with x = 14.

Question 10 provides two points to continue with, and Question 12 shows that it is
irrelevant which one you pick for further calculations. After Alice recovers Bob’s point
(14, 1082), she then uses her private key to calculate 421(14, 1082) = 421 · 583P ≡ 843P
(mod 1223)= (274, 930).

Question 11. If Bob is provided E : y2 = x3 + x + 1 over F1223 and recovers the point
A(635, 1153), then show that, when he calculates 583A, he determines the same point as Alice.
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Alice and Bob now use the x-coordinate 274 as the symmetric key for all further
communication. In practice, the x-coordinate will contain hundreds of digits, so the
first 256 bits are used as the key, or, more generally, a so-called hash function is applied,
which shortens the number of digits.

Question 12. Use Table 5 to mimic the ECDH key exchange when p = 5. Show that the choice
of a point from Question 10 is irrelevant by intentionally using the “wrong” point to finish the
exchange and observing that the same x-coordinate is recovered.
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