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Unimodular Roots and Arithmetic Progressions

Michael Barz1

1 Introduction

Michael Brilleslyper and Lisbeth Schaubroeck investigated polynomials of the form
zn + zk − 1 in [1]. Specifically, they sought to find a way to determine when such a
polynomial had at least one unimodular root – that is, a complex root r of the polyno-
mial with |r| = 1. Their question was motivated by the polynomials of the form zn− 1,
whose roots (referred to as roots of unity) are all unimodular.

At the end of their paper, they posed four questions. In this paper, I will partially
solve one of those questions, namely the question of when zn + zk + zj − 1 has a uni-
modular root. Specifically, I will resolve this question for the case in which n, k, j is an
arithmetic progression.

1.1 Main Result

I will call an ordered pair (n, d) of positive integers unimodular if n > 2d and

zn + zn−d + zn−2d − 1

has a unimodular root. My main result is the theorem below which shows how to
determine whether or not a pair (n, d) is unimodular without having to actually find
any roots.

Theorem 1. Let n, d be positive integers with n > 2d, not both even.
Then (n, d) is unimodular if and only if either n is even or n ≡ d (mod 4).

This theorem follows directly from two lemmas, Lemma 3 and 4, that I will state
and prove in Sections 4 and 5 below. First, however, I will first introduce the geometry
of complex numbers, and provide a geometric motivation to show why it is interesting
to look at unimodular pairs.

1Michael Barz is a student at the Northside College Preparatory High School, Chicago, USA.
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2 The Geometry of Complex Numbers

2.1 The Geometry of Real Numbers

Complex numbers are often introduced algebraically, as solutions to the problem of
negative square roots. Here, I will introduce them geometrically.

We often think of real numbers as being on the real number line, a one-dimensional
continuum of numbers.

0 1 2 3 4−4 −3 −2 −1

From this view, we may wonder whether there could be two-dimensional numbers.

2.2 The Complex Numbers

This leads to the complex numbers.
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To present these, we introduce the imaginary number i satisfying i2 = −1. This
relation is motivated geometrically when I discuss polar forms below. Every complex
number can then be written in the form z = a+ bi where a and b are both real numbers,
and the number z can also be thought of a point in the plane with coordinates (a, b).
For instance in the figure above,

0 , 1 , 2 , 3 , i , 2i , 3i , 3 + i , 3− i , and 2ei(3π/4) = −
√
2 +
√
2 i

are all complex numbers.
The numbers 3 + i and 3 − i are complex conjugates since you can reflect one of

them over the real number line to get the other. In general, the conjugate of a + bi is
a− bi, and we denote the conjugate of any complex number z by z.
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The “length” of a complex number z, called the modulus of z, is denoted by |z|. It is
the distance from that complex number to the point 0, just like the absolute value of a
real number |x|. By Pythagoras’ Theorem,

|a+ bi| =
√
a2 + b2 .

For instance, |1| = 1, |0| = 0, and |1 + i| =
√
2. Conjugates and the modulus relate to

each other very nicely. In particular, if z = a+ bi, then

zz = (a+ bi)(a− bi) = a2 + b2 = |z|2 .

2.3 Polar Forms of Complex Numbers

I have so far been writing complex numbers z in the form z = a+ bi, their rectangular
or Cartesian form. Complex numbers can also be written in their polar form, as

z = r(cos θ + i sin θ) ,

where r = |z| is the modulus of z and θ is the anti-clockwise angle from the positive
x-axis direction to the direction of z when seen from 0.

The number cos θ+ i sin θ is the complex number obtained by rotating the number 1
in anti-clockwise direction about the origin (the real number 0) by the angle θ. This can
be thought of as the “direction” of our complex number. Then, we multiply by r to get
the correct “length”. See the red point z = 2ei(3π/4) in the complex plane above for an
example. It has modulus |z| = 2 and angle 3π/4 to the positive x-axis, so we can also
write z as

z = 2
(
cos(3π/4) + i sin(3π/4)

)
= −
√
2 +
√
2 i .

The polar form of a complex number is a very nice representation to use algebraically,
since cosx + i sinx is a very nicely behaving function. You can verify, using trigono-
metric identities or by geometrically by interpreting it as a rotation, that cosx + i sinx
behaves, very surprisingly, much like an exponential function. If we define f(x) =
cosx + i sinx, then f(a + b) = f(a)f(b) and f(0) = 1. Also, f(−x) = 1/f(x) and
(f(x))n = f(nx). These properties make algebraic calculations with cosx + i sinx very
easy. They might also lead us to suspect Euler’s formula, which states [3] that

eix = cosx+ i sinx

for any real number x. These polar forms help reinforce the notion of multiplication as
rotating and scaling. If z = reiθ and w = seiφ, then

zw = rsei(θ+φ) ,

which can be found by scaling z by the factor s, and then rotating it by the angle φ.
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2.4 Some Geometric Motivations for Unimodular Roots

The polynomials of the form zn − 1 have roots which are all on the unit circle, the
circle centered at 0 with radius 1 in the complex plane. Moreover, all of these roots are
distributed evenly about the unit circle. Below, I have drawn the unit circle, as well as
the roots of z8 − 1.

This symmetric geometry of the roots of zn − 1 is what prompted Brilleslyper and
Schaubroeck to investigate zn+zk−1, and to investigate the conditions for when those
polynomials had roots on the unit circle.

According to Theorem 1, z5+ z4+ z3−1 will have at least one root on the unit circle
but z5+ z3+ z− 1 will not, for instance. The roots of both these polynomials are drawn
below, the roots of z5 + z4 + z3 − 1 in red, and those of z5 + z3 + z − 1 in blue.

3 The Problem of Unimodular Roots

3.1 A Quick Reduction

Before continuing on to look at arithmetic progressions, I will include one theorem that
applies to the general case of the problem. This theorem allows us to only have to deal
with cases in which the three exponents are relatively prime.

Theorem 2. Let n, j, k, and a be positive integers. Then, the polynomial p(z) = zan + zak +
zaj − 1 has unimodular roots if and only if f(z) = zn + zk + zj − 1 does.

Proof. The key observation to make in this proof is that, if z = eiθ is a root of p, then eiaθ

is a root of f (and vice versa). To see this, just note that p(eiθ) = 0 implies that

e(an)(iθ) + e(ak)(iθ) + e(aj)(iθ) − 1 = 0 ,

and thus f(ei(aθ)) = 0, so f has a unimodular root as well. The other direction is very
similar, concluding this proof.
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4 Parity and Experimental Data

When first working on this problem, I used Python and WolframAlpha to gather “ex-
perimental data” about when a pair (n, d) is unimodular. By looking at data, I noticed
that the parity of n and d seemed to correlate with whether or not (n, d) is unimodular,
and so I divided my work into parity-based cases.

4.1 n even, d even

In the case, as Theorem 2 shows, (n, d) will be unimodular if and only if (n/2, d/2) is
unimodular. So, we keep dividing by two until one of n or d is odd, and then this will
fall into another case!

4.2 n even, d odd

This case is very easy to resolve; −1 is always a unimodular root!

Lemma 3. If n, d are positive integers with n > 2d, and n is even but d is odd, then (n, d) is
unimodular.

Proof. To see this, note that n will be even, n − d will be odd, and n − 2d will be even.
Also, −1 raised to an even power is 1, while −1 raised to an odd power is −1. Thus,
we have that

(−1)n + (−1)n−d + (−1)n−2d − 1 = 1− 1 + 1− 1 = 0 .

4.3 n odd

For this case, let us first look at some examples. If n = 7 and d = 1, then the polynomial
z7 + z6 + z5 − 1 has no unimodular roots (according to WolframAlpha [4]). However,
for n = 5 and d = 1, the polynomial z5 + z4 + z3− 1 does have a unimodular root: i [5].

Using my Python program to generate data for many polynomials with odd de-
gree n, I conjectured that (n, d) is unimodular if and only if n and d leave the same
remainder when divided by 4. This result, Lemma 4 below, is stated formally and
proven in the next section.
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5 Odd n

Lemma 4. Let n, d be positive integers with n > 2d and n odd.
Then, (n, d) is unimodular if and only if n ≡ d (mod 4).

Proof. The proof is split up into two parts. First, we show that a unimodular root exists
if n ≡ d (mod 4); then, we show that no unimodular root exists if n 6≡ d (mod 4).

So, suppose that n ≡ d (mod 4). Write n = 4k + a and d = 4j + a where 0 ≤ a < 4
and where a, j, and k are all integers. Then, since i4 = 1,

i4k+a + i4(k−j) + i4(k−2j)−a − 1 = i4kia + i4(k−j) + i4(k−2j)i−a − 1 = ia + i−a .

As n is odd, either a = 1 or a = 3. If a = 1, then ia + i−a = i+ 1/i = i− i = 0. Similarly,
if a = 3, then i3+ i−3 = −i+ i = 0. In either case, i is a unimodular root. This completes
the first half of the proof.

Now suppose that n 6≡ d (mod 4). I wish to show that (n, d) is not unimodular.
Since n is odd, either n ≡ 1 (mod 4) or n ≡ 3 (mod 4). Suppose that n ≡ 1 (mod 4)

and write n = 4k + 1 and d = 4j + b where 0 ≤ b < 4. Then (n, d) is unimodular if and
only if the polynomial

z4k+1 + z4(k−j)+1−b + z4(k−2j)+1−2b − 1

has a unimodular root. For sake of contradiction, assume that the polynomial does
have a unimodular root. Then, there is some complex number w such that |w| = 1 and

w4k+1 + w4(k−j)+1−b + w4(k−2j)+1−2b = 1 ,

or, in other words,
w4(k−2j)+1−2b(w8j+2b + w4j+b + 1) = 1 .

Then

|w8j+2b + w4j+b + 1| =
∣∣∣∣ 1

w4(k−2j)+1−2b

∣∣∣∣ = |w|−(4(k−2j)+1−2b) = 1−(4(k−2j)+1−2b) = 1 .

Write u = w4j+b. Then
|u2 + u+ 1| = 1 .

Note that u 6= 1 and that

|u3 − 1| = |(u− 1)(u2 + u+ 1)| = |u− 1||u2 + u+ 1| = |u− 1| .

Therefore,
(u3 − 1)(u3 − 1) = |u3 − 1|2 = |u− 1|2 = (u− 1)(u− 1) .

Since |u| = |w4j+b| = |w|4j+b = 14j+b = 1, it follows that uu = |u|2 = 1, so u = 1
u

.
Therefore,

(u3 − 1)(1/u3 − 1) = (u− 1)(1/u− 1) .
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Now multiply by u3 to get

(u3 − 1)(1− u3) = (u− 1)(u2 − u3) .

By expanding each side of this equation and tidying up, we get

(u2 + 1)(u2 − 1)2 = u6 − u4 − u2 + 1 = 0 .

Thus, u2 = −1 or u2 = 1. Since u 6= 1, this means that u ∈ {±i,−1}. Something
particularly interesting about this discovery is that it implies that w is a root of unity –
that is, there is some integer p such that wp = 1.

Now, I will look at several subcases to show that no unimodular root can exist. The
general structure of my argument is to use a lot of algebra to arrive at a contradiction
claiming that some odd number is even.

First, suppose that d ≡ 1 (mod 4) (i.e., that b = 1), and suppose that u = w4j+1 = −1.
Then

w4k+1 + w4k+1−(4j+1) + w4k+1−2(4j+1) = w4k+1 + w4k+1/w4j+1 + w4k+1/(w4j+1)2

= w4k+1 − w4k+1 + w4k+1

= w4k+1 .

Thus, w4k+1 = 1. Write w = eiθ. Then ei(4k+1)θ = w4k+1 = 1, so

cos
(
(4k + 1)θ

)
+ i sin

(
(4k + 1)θ

)
= 1 ,

which implies that sin
(
(4k + 1)θ

)
= 0. Thus,

(4k + 1)θ = 2xπ

for some integer x. In other words,

θ =
2x

4k + 1
π .

However, we have that w4j+1 = −1, which for similar reasons implies that

(4j + 1)θ = (2m+ 1)π

for some integer m. Therefore,

2x

4k + 1
π = θ =

2m+ 1

4j + 1
π ,

so
2x(4j + 1) = (2m+ 1)(4k + 1) .

This, however, produces a contradiction since the left-hand side of the above equation
is even but the right-hand side is odd.
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Now, suppose that u = i. Then

w4k+1 + w4k+1−(4j+1) + w4k+1−2(4j+1) = w4k+1 + w4k+1/w4j+1 + w4k+1/(w4j+1)2

= w4k+1 + w4k+1/i+ w4k+1/i2

= w4k+1 − iw4k+1 − w4k+1

= −iw4k+1 .

Thus,
w4k+1 = −1/i = i .

Again, let w = eiθ. Then

w4(k+j+1) = w4k+1 · w4j+1 = i · i = −1 ,

so
4(k + j + 1)θ = (2n+ 1)π .

Also, note that

cos((4k + 1)θ) + i sin((4k + 1)θ) = ei(4k+1)θw4k+1 = i ,

so sin
(
(4k+1)θ

)
= 1 and cos

(
(4k+1)θ

)
= 0, implying that (4k+1)θ is an odd multiple

of π/2. Therefore,
(4k + 1)θ = (2m+ 1)

π

2

for some integer m. Thus,

2x+ 1

4(k + j + 1)
π = θ =

2m+ 1

4k + 1
· π
2
,

and so
(2x+ 1)(4k + 1) = 2(k + j + 1)(2m+ 1) ,

which again is a contradiction as we have an even number on the right and an odd on
the left.

The case in which u = −i is similar, as are indeed the cases in which d ≡ 0, 2, 3
(mod 4) and n ≡ 3 (mod 4): the algebraic calculations are much the same, and all end
in contradiction. Hence, (n, d) is not unimodular if n 6≡ d (mod 4).

This completes the proof of the lemma.
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6 Conclusion

In this paper, I have characterised when a pair (n, d) is unimodular, partially resolving
the problem of finding when zn + zk + zj − 1 has unimodular roots. Theorem 2 let me
consider only those cases in which n, k, and j share no common factors, and Theorem 1
takes care of all other cases.

My proof for Lemma 2 broke into many cases at the end, so an interesting question
would be to determine if there is a more streamlined way to prove this lemma. This
might be possible since all of the cases had the same main idea but had tiny differences
in calculation that necessitated the splitting into cases.

Another generalization of the problem would be adding more terms, considering
zn+zn−d+zn−2d+zn−3d−1, or a polynomial with even more terms. The techniques that
I used in this paper could be extended to those for the most part, although it would
introduce even more casework. If someone could find a proof without splitting into
cases, then perhaps it will be very easy to generalize to an arithmetic progression of
arbitrary length.
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