Parabola Volume 54, Issue 1 (2018)

Terminating sum of digits of a positive integer

Sin Keong Tong¹

Dedicated to Eleanor for restoring my hope in humanity.

The terminating sum T(n) of a positive integer n is obtained by repeatedly adding the digits of n until a single digit number is obtained. For instance, $n = 2018^{2018}$ is a number with 6670 digits, whose sum is 30001. Since 4 = 3 + 1, $T(n) = T(2018^{2018}) = 4$. The web references [1] and [2] list $T(n^m)$ for large positive integers n and m, obtained by using MATLAB, C++ and Python. By extending the divisibility rule of 9, this note provides the following closed form expression for T(n).

Theorem. *Let n be a positive integer. Then*

$$T(n) = \begin{cases} 9 & \text{if } n \equiv 0 \pmod{9} \\ n \mod 9 & \text{if } n \not\equiv 0 \pmod{9} \end{cases}$$

By using this theorem, we only need to add the digits of n once in order to calculate T(n).

Example. The number n = 99 has digit sum 18 which in turn has digit sum 9, so T(99) = 9. This is also directly given by the theorem since $n = 99 \equiv 0 \pmod{9}$.

In contrast, $n = 98 \equiv 8 \pmod{9}$, so T(98) = 8 by the theorem.

Proof. Let

$$n = \sum_{k=0}^{m} d_k 10^k = \sum_{k=0}^{m} d_k + \sum_{k=0}^{m-1} d_k (10^k - 1)$$

where d_0, d_1, \ldots, d_m are the digits of *n*. Let S(n) be the sum of the digits of *n*. That is,

$$S(n) = \sum_{k=0}^{m} d_k \,.$$

Since $10^k - 1$ is an integer consisting of digits of 9 only, $d_k(10^k - 1)$ is divisible by 9, so we conclude that

$$n \equiv S(n) \pmod{9}$$

 \square

By repeatedly applying the above procedure, we obtain the required result.

¹Sin Keong Tong is a graduate student at the School of Mathematics and Statistics, UNSW Sydney, Australia.

n	$\pmod{9}$	k	$m \pmod{k}/T(n^m)$
	0	10	$0/1, m \ge 1/9$
	1	10	Allm/1
	2	6	0/1, 1/2, 2/4, 3/8, 4/7, 5/5
	3	10	$0/1, 1/3, m \ge 2/9$
	4	3	0/1, 1/4, 2/7
	5	6	0/1, 1/5, 2/7, 3/8, 4/4, 5/2
	6	10	$0/1, 1/6, m \ge 2/9$
	7	3	0/1, 1/7, 2/4
	8	10	$0/1, 1/6, m \ge 2/9$

The theorem can be extended to n^m for positive integers n and m in the table below.

Closing remarks

There could be those who might question the value of these results such as these. They may be less important than an accounting ledger. To a mathematics devotee, their mind is a solitaire game in search for the first step to climb the rainbow.

References

- [1] www.quora.com, How do I find sum of digits of a large no raised to a large power, last retrieved 27 April 2018.
- [2] www.quora.com, How do I find the sum of the digits of really large numbers with MATLAB or another language. Example: 3⁶00 has 287 digits. How do I add them?, last retrieved 27 April 2018.