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The Radii of Hyper Circumsphere and Insphere through
Equidistant Points

Sin Keong Tong1

Three points A, B, and C of equal distance from each other form an equilateral
triangle in R2. The reader can verify that it is not possible to construct a figure with
4 equidistant points in R2, as the points form a rhombus where the long diagonal is
of different length to the other 5 edges. To form a figure with 4 equidistant points
A,B,C,D ∈ R3, we extend an equilateral triangle from each of the sides AB, BC,
and CA, and join the points D1, D2, and D3 as in Figure 1(a). The result is a regular
tetrahedron.
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Figure 1: Tetrahedron

Next, we extend from each of the faces of a regular tetrahedron ABCD four new
tetrahedra, as shown in Figure 2(a). By joining the points E1, E2, E3, E4 in R4, a figure
with 5 equidistant points A,B,C,D,E is obtained, as shown in Figure 2(b). The regular
5-simplex formed in this way has 10 edges, 10 faces (each of which is a regular triangle)
and 5 tetrahedra.

1Sin Keong Tong is a graduate student at the School of Mathematics and Statistics, UNSW Sydney,
Australia.
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Figure 2: Constructing a 5-simplex from a tetrahedron

In general, n+1 equidistant points P1, . . . , Pn+1 in Rn form a regular (n+1)-simplex S.
It is formed by extending from each (n− 2)-dimensional face of a regular n-simplex in
Rn−1 a regular n-simplex and joining their n new points into one new point.

The circumsphere is the hypersphere that goes through all of the n + 1 points of S.
The insphere is the largest hypersphere enclosed by these n+ 1 points.

Figure 3: Insphere and circumsphere of a tetrahedron

The purpose of this paper is to derive formulae, given by the Theorem 1 to follow,
for the radius Rn of the circumsphere and the radius rn of the insphere for regular
(n+ 1)-simplices in Rn.
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Example. We will now demonstrate the technique in determining the radius of the
circumsphere and insphere of the regular tetrahedron in R3, as shown in Figure 3, by
extending from an equilateral triangle.
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Figure 4: The circumsphere and insphere of a triangle

The pointsA2(−1
2
, 1√

12
), B2(

1
2
, 1√

12
), C2(0,

−1√
3
) in Figure 4 form an equilateral triangle

with sides of length 1 satisfying the equation

x2 + y2 =
1

3
=

(
1√
3

)2

.

Therefore, the circumsphere of the triangle has radius R2 = 1√
3
. Also, then the radius

of the insphere of the triangle is r2 = 1√
12

since it is the perpendicular distance from the
origin O to the line segment A2B2.

Now map the points A2, B2, C2 to A3, B3, C3 ∈ R3 by appending to each point a 0
as z-coordinate. Any point P (0, 0, z) is equidistant to A3, B3, C3, so, to form a regular
tetrahedron, choose z such that

z2 +

(
1√
3

)2

= 1 .

We see that z =
√
6
3

, so the points

A3

(
− 1

2
,

1√
12
, 0

)
, B3

(
− 1

2
,

1√
12
, 0

)
, C3

(
0,
−
√
3

3
, 0

)
, D3

(
0, 0,

√
6

3

)
form a regular tetrahedron with edges of length 1 in R3.

The next step is to shift the points to a sphere with center at the origin. Let P be the
point (0, 0, d) and note that PA3 = PB3 = PC3. We will now find P by considering the
equation implied by PC3 = PD3 :(√

3

3

)2

+ d2 =

(
d−
√
6

3

)2

.
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Solving this equation yields d = 1√
24

, so P is the point (0, 0, 1√
24
). Since the point P lies

on the z-axis, the distance d is the perpendicular distance from P to4ABC (which lies
in the x−y plane). By symmetry, it is also the perpendicular distance from P to4BCD,
4CDA, and 4DAB, and is therefore the insphere radius of the regular tetrahedron,
namely

r3 =
1√
24
.

By shifting each point down by 1√
24

in the z coordinate, the points

A′3

(
−1
2
,

√
3

6
,
−1√
24

)
, B′3

(1
2
,

√
3

6
,
−1√
24

)
, C ′3

(
0,
−
√
3

3
,
−1√
24

)
, D′3

(
0, 0,

√
6

4

)
lie on the sphere

x2 + y2 + z2 =
3

8
=

(√
3

8

)2

.

These points form a regular tetrahedron centered around the origin. We see that
the radius of circumsphere containing these points is

R3 =

√
3

8
.

Theorem 1. Let {P1, . . . , Pn+1} be n + 1 points in Rn with constant distance 1 between
each two points. Then the radii Rn and rn of the circumsphere and insphere of the n-simplex
{P1, . . . , Pn+1} are, respectively,

Rn =

√
n

2(n+ 1)
(1)

rn =
1√

2n(n+ 1)
. (2)

For instance,

R2 =
1√
3
, r2 =

1√
12
, R3 =

√
3

8
, r2 =

1√
24
,

as we have seen in the example above.

Proof. The proof is by induction on n. We have proven the cases n = 2, 3, so assume
that the theorem is true for n ≥ 3. Consider n + 1 points {P1, . . . , Pn+1} in Rn with
constant distance 1 between each two points. By shifting and rotating these points, we
can let the centre of the circumsphere and insphere of these points be the origin so that
the point Pn+1 = Z(n,−Rn), where

Z(n, z) = (

n−1︷ ︸︸ ︷
0, 0, . . . , 0, z) .
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Let the coordinates of each point be written as Pk = (xk,1, . . . , xk,n). Then

n∑
i=1

x2k,i = R2
n . (3)

Map the points P1, . . . , Pn+1 ∈ Rn to the points Q1, . . . , Qn+1 ∈ Rn+1 by appending a 0
in coordinate position n+ 1.

Define
Qn+2 = Z(n+ 1,

√
1−R2

n) .

Then, for each k = 1, . . . , n+ 1,

|Qn+2Qk|2 = R2
n + 1−R2

n = 1 .

Therefore, the pointsQ1, . . . , Qn+1 are each at distance 1 fromQn+2, so these n+2 points
form a regular (n+ 1)-simplex in Rn+1.

Let C = Z(n+ 1, d) for some d. For each k = 1, . . . , n+ 1, identity (3) implies that

|CQk|2 = R2
n + d , (4)

so C is equidistant to the points Q1, . . . , Qn+1.
We wish to determine d so that C also has this distance to Qn+2. Since

R2
n + d2 =

(
d−

√
1−R2

n

)2
,

we see that

d =
1− 2R2

n

2
√

1−R2
n

. (5)

Here, d is the perpendicular distance from the centre of the circle atC to the hyperplane
containing {Q1, . . . , Qn+2}. Because of the symmetry of a regular (n + 1)-simplex, d is
also, for each k = 1, . . . , n + 2, the projection of each point to the hyperplane through
{Q1, . . . , Qn+2}\Qk. Therefore, C is the insphere to the points Q1, . . . , Qn+2, and so
rn+1 = d. By (4),

rn+1 =
1− 2(n−1)

2n+2

2
√

1− n
2n+2

=
1√

2(n+ 1)(n+ 2)
.

Since Z(n+1, rn+1) is the centre of the circle through the pointsQ1, . . . , Qn+2, the radius
of the circumsphere is given by distance between Z(n+1, rn+1) and Z

(
n+1,

√
1−R2

n

)
.

Therefore, by induction assumption and (3),

Rn+1 =
√
1−R2

n − rn+1

=
√

1−R2
n −

1− 2R2
n

2
√
1−R2

n

=
√

1−R2
n

(
1− 1−R2

n

2(1−R2
n)

)
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=
1

2
√

1−R2
n

=
1

2
√

1− n
2n+2

=

√
n+ 1

2(n+ 2)
.

Finally, map the points Q1, . . . , Qn+2 to R1, . . . , Rn+2 by preserving the first n coordi-
nates and subtracting d (calculated in (6)) from the (n + 1)th coordinate. The points
R1, . . . , Rn+2 are pairwise equidistant from each other, and therefore form the regular
n-simplex in Rn+1.

By induction, the proof is now complete. 2

Theorem 1 provides a number of insights into the properties of a regular tetrahe-
dron with n+ 1 vertices in the propositions below.

Proposition 2. By the construction, the centres of the insphere and circumsphere coincide.

Proposition 3. Rn = nrn

Proposition 4. lim
n→∞

Rn =
1√
2

Proposition 5. As n → ∞, each point pair PiPj subtend a right angle at the center C (see
Figure 5).

Proof. By the theorem above, we see that Rn → 1√
2

as n → ∞. Therefore, Figure 5 and
the cosine identity

cos θ =
R2

n +R2
n − a2

2R2
n

imply that θ → 90◦ as n→∞.

Pi

Pj

C

1Rn

Rn

θ

Figure 5: Angle subtended by an edge to the centre of circumsphere

Michelle, thank you for the song that summer sings.
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