The Radii of Hyper Circumsphere and Insphere through Equidistant Points

Sin Keong Tong[1](#page-0-0)

Three points A , B , and C of equal distance from each other form an equilateral triangle in \mathbb{R}^2 . The reader can verify that it is not possible to construct a figure with 4 equidistant points in \mathbb{R}^2 , as the points form a rhombus where the long diagonal is of different length to the other 5 edges. To form a figure with 4 equidistant points $A, B, C, D \in \mathbb{R}^3$, we extend an equilateral triangle from each of the sides AB, BC, and CA, and join the points D_1 , D_2 , and D_3 as in Figure 1(a). The result is a regular tetrahedron.

Figure 1: Tetrahedron

Next, we extend from each of the faces of a regular tetrahedron ABCD four new tetrahedra, as shown in Figure 2(a). By joining the points E_1, E_2, E_3, E_4 in \mathbb{R}^4 , a figure with 5 equidistant points A, B, C, D, E is obtained, as shown in Figure 2(b). The *regular* 5*-simplex* formed in this way has 10 edges, 10 faces (each of which is a regular triangle) and 5 tetrahedra.

 1 Sin Keong Tong is a graduate student at the School of Mathematics and Statistics, UNSW Sydney, Australia.

(b) 5-simplex

In general, $n+1$ equidistant points P_1, \ldots, P_{n+1} in \mathbb{R}^n form a *regular* $(n+1)$ -simplex S. It is formed by extending from each $(n - 2)$ -dimensional face of a regular *n*-simplex in \mathbb{R}^{n-1} a regular *n*-simplex and joining their *n* new points into one new point.

The *circumsphere* is the hypersphere that goes through all of the $n + 1$ points of S . The *insphere* is the largest hypersphere enclosed by these $n + 1$ points.

Figure 3: Insphere and circumsphere of a tetrahedron

The purpose of this paper is to derive formulae, given by the Theorem [1](#page-3-0) to follow, for the radius R_n of the circumsphere and the radius r_n of the insphere for regular $(n + 1)$ -simplices in \mathbb{R}^n .

Example. We will now demonstrate the technique in determining the radius of the circumsphere and insphere of the regular tetrahedron in \mathbb{R}^3 , as shown in Figure 3, by extending from an equilateral triangle.

Figure 4: The circumsphere and insphere of a triangle

The points $A_2(-\frac{1}{2})$ $(\frac12,\frac{1}{\sqrt{12}})$, $B_2(\frac12)$ $(\frac{1}{2},\frac{1}{\sqrt{12}})$, $C_2(0,\frac{-1}{\sqrt{3}})$ in Figure 4 form an equilateral triangle with sides of length 1 satisfying the equation

$$
x^{2} + y^{2} = \frac{1}{3} = \left(\frac{1}{\sqrt{3}}\right)^{2}.
$$

Therefore, the circumsphere of the triangle has radius $R_2 = \frac{1}{\sqrt{2}}$ $_{\overline{3}}$. Also, then the radius of the insphere of the triangle is $r_2=\frac{1}{\sqrt{12}}$ since it is the perpendicular distance from the origin O to the line segment A_2B_2 .

Now map the points A_2, B_2, C_2 to $A_3, B_3, C_3 \in \mathbb{R}^3$ by appending to each point a 0 as *z*-coordinate. Any point $P(0, 0, z)$ is equidistant to A_3, B_3, C_3 , so, to form a regular tetrahedron, choose z such that

$$
z^2 + \left(\frac{1}{\sqrt{3}}\right)^2 = 1.
$$

We see that $z =$ √ 6 $\frac{\sqrt{6}}{3}$, so the points

$$
A_3\left(-\frac{1}{2}, \frac{1}{\sqrt{12}}, 0\right), \quad B_3\left(-\frac{1}{2}, \frac{1}{\sqrt{12}}, 0\right), \quad C_3\left(0, \frac{-\sqrt{3}}{3}, 0\right), \quad D_3\left(0, 0, \frac{\sqrt{6}}{3}\right)
$$

form a regular tetrahedron with edges of length 1 in \mathbb{R}^3 .

The next step is to shift the points to a sphere with center at the origin. Let P be the point $(0, 0, d)$ and note that $PA_3 = PB_3 = PC_3$. We will now find P by considering the equation implied by $PC_3 = PD_3$:

$$
\left(\frac{\sqrt{3}}{3}\right)^2 + d^2 = \left(d - \frac{\sqrt{6}}{3}\right)^2.
$$

Solving this equation yields $d = \frac{1}{\sqrt{24}}$, so P is the point $(0, 0, \frac{1}{\sqrt{24}})$. Since the point P lies on the *z*-axis, the distance *d* is the perpendicular distance from *P* to $\triangle ABC$ (which lies in the $x-y$ plane). By symmetry, it is also the perpendicular distance from P to ∆BCD, $\triangle CDA$, and $\triangle DAB$, and is therefore the insphere radius of the regular tetrahedron, namely

$$
r_3 = \frac{1}{\sqrt{24}}.
$$

By shifting each point down by $\frac{1}{\sqrt{24}}$ in the z coordinate, the points

$$
A'_3\left(\frac{-1}{2},\frac{\sqrt{3}}{6},\frac{-1}{\sqrt{24}}\right)
$$
, $B'_3\left(\frac{1}{2},\frac{\sqrt{3}}{6},\frac{-1}{\sqrt{24}}\right)$, $C'_3\left(0,\frac{-\sqrt{3}}{3},\frac{-1}{\sqrt{24}}\right)$, $D'_3\left(0,0,\frac{\sqrt{6}}{4}\right)$

lie on the sphere

$$
x^{2} + y^{2} + z^{2} = \frac{3}{8} = \left(\sqrt{\frac{3}{8}}\right)^{2}.
$$

These points form a regular tetrahedron centered around the origin. We see that the radius of circumsphere containing these points is

$$
R_3 = \sqrt{\frac{3}{8}}.
$$

Theorem 1. Let $\{P_1, \ldots, P_{n+1}\}$ be $n+1$ points in \mathbb{R}^n with constant distance 1 between *each two points. Then the radii* R_n *and* r_n *of the circumsphere and insphere of the n-simplex* ${P_1, \ldots, P_{n+1}}$ *are, respectively,*

$$
R_n = \sqrt{\frac{n}{2(n+1)}}\tag{1}
$$

$$
r_n = \frac{1}{\sqrt{2n(n+1)}}.
$$
\n(2)

For instance,

$$
R_2 = \frac{1}{\sqrt{3}},
$$
 $r_2 = \frac{1}{\sqrt{12}},$ $R_3 = \sqrt{\frac{3}{8}},$ $r_2 = \frac{1}{\sqrt{24}},$

as we have seen in the example above.

Proof. The proof is by induction on *n*. We have proven the cases $n = 2, 3$, so assume that the theorem is true for $n \geq 3$. Consider $n+1$ points $\{P_1, \ldots, P_{n+1}\}$ in \mathbb{R}^n with constant distance 1 between each two points. By shifting and rotating these points, we can let the centre of the circumsphere and insphere of these points be the origin so that the point $P_{n+1} = Z(n, -R_n)$, where

$$
Z(n, z) = (0, 0, \dots, 0, z).
$$

Let the coordinates of each point be written as $P_k = (x_{k,1}, \ldots, x_{k,n})$. Then

$$
\sum_{i=1}^{n} x_{k,i}^{2} = R_{n}^{2}.
$$
 (3)

Map the points $P_1, \ldots, P_{n+1} \in \mathbb{R}^n$ to the points $Q_1, \ldots, Q_{n+1} \in \mathbb{R}^{n+1}$ by appending a 0 in coordinate position $n + 1$.

Define

$$
Q_{n+2} = Z(n+1, \sqrt{1 - R_n^2}).
$$

Then, for each $k = 1, \ldots, n + 1$,

$$
|Q_{n+2}Q_k|^2 = R_n^2 + 1 - R_n^2 = 1.
$$

Therefore, the points Q_1, \ldots, Q_{n+1} are each at distance 1 from Q_{n+2} , so these $n+2$ points form a regular $(n + 1)$ -simplex in \mathbb{R}^{n+1} .

Let $C = Z(n + 1, d)$ for some d. For each $k = 1, \ldots, n + 1$, identity [\(3\)](#page-4-0) implies that

$$
|CQ_k|^2 = R_n^2 + d\,,\tag{4}
$$

so *C* is equidistant to the points Q_1, \ldots, Q_{n+1} .

We wish to determine d so that C also has this distance to Q_{n+2} . Since

$$
R_n^2 + d^2 = \left(d - \sqrt{1 - R_n^2}\right)^2,
$$

we see that

$$
d = \frac{1 - 2R_n^2}{2\sqrt{1 - R_n^2}}.\tag{5}
$$

Here, d is the perpendicular distance from the centre of the circle at C to the hyperplane containing $\{Q_1, \ldots, Q_{n+2}\}\.$ Because of the symmetry of a regular $(n + 1)$ -simplex, d is also, for each $k = 1, \ldots, n + 2$, the projection of each point to the hyperplane through $\{Q_1, \ldots, Q_{n+2}\}\backslash Q_k$. Therefore, C is the insphere to the points Q_1, \ldots, Q_{n+2} , and so $r_{n+1} = d$. By [\(4\)](#page-4-1),

$$
r_{n+1} = \frac{1 - \frac{2(n-1)}{2n+2}}{2\sqrt{1 - \frac{n}{2n+2}}} = \frac{1}{\sqrt{2(n+1)(n+2)}}.
$$

Since $Z(n+1, r_{n+1})$ is the centre of the circle through the points Q_1, \ldots, Q_{n+2} , the radius of the circumsphere is given by distance between $Z(n+1, r_{n+1})$ and $Z\big(n+1, \sqrt{1-R_n^2}\big).$ Therefore, by induction assumption and [\(3\)](#page-4-0),

$$
R_{n+1} = \sqrt{1 - R_n^2} - r_{n+1}
$$

= $\sqrt{1 - R_n^2} - \frac{1 - 2R_n^2}{2\sqrt{1 - R_n^2}}$
= $\sqrt{1 - R_n^2} \left(1 - \frac{1 - R_n^2}{2(1 - R_n^2)}\right)$

$$
= \frac{1}{2\sqrt{1 - R_n^2}}
$$

$$
= \frac{1}{2\sqrt{1 - \frac{n}{2n+2}}}
$$

$$
= \sqrt{\frac{n+1}{2(n+2)}}.
$$

Finally, map the points Q_1, \ldots, Q_{n+2} to R_1, \ldots, R_{n+2} by preserving the first n coordinates and subtracting d (calculated in (6)) from the $(n + 1)^{th}$ coordinate. The points R_1, \ldots, R_{n+2} are pairwise equidistant from each other, and therefore form the regular *n*-simplex in \mathbb{R}^{n+1} .

By induction, the proof is now complete. \Box

Theorem [1](#page-3-0) provides a number of insights into the properties of a regular tetrahedron with $n + 1$ vertices in the propositions below.

Proposition 2. *By the construction, the centres of the insphere and circumsphere coincide.*

Proposition 3. $R_n = nr_n$

Proposition 4. $\lim_{n\to\infty} R_n =$ $\frac{1}{\sqrt{2}}$ 2

Proposition 5. As $n \to \infty$, each point pair $P_i P_j$ subtend a right angle at the center C (see *Figure [5\)](#page-5-0).*

Proof. By the theorem above, we see that $R_n \to \frac{1}{\sqrt{n}}$ $\frac{1}{2}$ as $n \to \infty$. Therefore, Figure [5](#page-5-0) and the cosine identity

$$
\cos\theta = \frac{R_n^2 + R_n^2 - a^2}{2R_n^2}
$$

imply that $\theta \to 90^\circ$ as $n \to \infty$.

Figure 5: Angle subtended by an edge to the centre of circumsphere

Michelle, thank you for the song that summer sings.

6

 \Box