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Alzheimer’s Disease and Support Vector Machines:
An Introduction to Machine Learning

James O. Hortle1

Abstract

An introduction to machine learning is provided, wherein the basic theory of
a major concept, support vector machines, is developed. This idea is then applied to
data from two studies on Alzheimer’s disease. The results indicate that support
vector machines can be an effective model for the analysis of MRI data for this
disease, potentially aiding in diagnosis.

A Introduction

Suppose that you have some data and that you want to know more about it. For exam-
ple, consider a collection of photos saved on your smart phone. If you are a dog lover,
it might be nice to tag each photo so that you know which ones contain dogs. In that
way, you can easily search for all your canine photos. But, if you are an avid fan of
furry friends, perhaps you have thousands or millions of photos. Going through them
all would be tedious and expensive. If, instead, the task could be automated, then you
would save a lot of time and energy.

Similarly, researchers and those working with data are interested in ways that we
can use mathematics to help us solve problems such as detecting cancer, predicting the
weather or even classifying photos as above. The example in the preceding paragraph
is called a classification task and is a common problem. Keep it in mind as we will use it
to explain a few key concepts.

This article serves as an introduction to the basics of what is commonly known as
machine learning. Machine learning has its roots in statistics with a long history that can
be traced back to Fisher’s method for pattern recognition in so-called “taxonomic prob-
lems” [7]. With the recent advent of powerful computers, exceedingly large datasets
can now be analysed. Historically, machine learning has been used to beat human
players at board games, as was the case with Deep Blue [9]. Recently, machine learn-
ing techniques have overcome certain watersheds, which indicate the maturity of the
techniques now being used [21]. Excitingly, machine learning is now being employed
in solving real-world problems in such domains as medicine [19], finance [8] and me-
teorology [15].

1James O. Hortle is a software engineer currently working in AI and robotics in Tokyo, Japan.
He holds a Bachelor of Arts and a Bachelor of Science (Advanced Mathematics) with Honours in Ap-
plied Mathematics from UNSW Sydney.

1



In order to make the presentation of machine learning more concrete, we will focus
on and give an overview of one machine learning method, namely support vector ma-
chines (SVMs), and then apply it to data from a study on Alzheimer’s disease. This is
well-suited for classification tasks and, for example, is quite good at classifying hand-
written digits, as might be found in the postcode of a letter or on a cheque, and has
been employed in postal services and banks.

B The basics of support vector machines

2.1 Preparing the data

Suppose that we have a set of data, which we will call a data set. This data set can be
anything, but typically it will be numerical in some way. This data set will be com-
posed of data points which are individual entries. For example, each photo in the ex-
ample above would be a data point, while the data set would be the whole collection
of photos. If you have N photos, then you might call the first one X1, the second one
X2, and so on, until you have called the last one XN .

Now, suppose that you have already looked at some of your photos before giving
up and have succeeded in tagging some as either containing a dog or not. Since you
have spent so much time classifying these photos into either dog or not dog , it
would be a shame to throw the tags away, so we will call your tags labels. Note that
there are only two options, so these are binary labels and we might instead represent
them by the numbers 1 (for positive) and −1 (for negative).2

We are now ready to define our data set more rigorously. We will let X1, . . . , XN be
data points with corresponding labels Y1, . . . , YN ∈ {−1, 1}. So, the set of ordered pairs
(Xi, Yi) is the data that we will be working with. In the rest of this article, we must
assume that there will always be at least one positive data point (that is, some Xi with
Yi = 1) and one negative data point (that is, some Xj with Yj = −1). If our data set
has only positive or only negative data points, or no data points at all, then it is called
trivial.

For automating your classification task, we will most likely be using a computer.
Hence, we need to transform our data into something that a computer can work with;
in other words, something numerical. In our dog example, one way to change a picture
into a number would be to measure the brightness of each pixel and add these values
to produce a number. There are many other (probably better) ways. For the rest of
this section, let us consider something more visual. We will let each data point Xi be
a point in the plane. That is, Xi, . . . , XN ∈ R2. We will write Xi = (xi, yi) when we
need to look at the x- and y-coordinates of Xi individually. It is a good idea to look at
Figure 1 while reading the rest of this section.

2You might be aware that binary often refers to the use of the two numbers 0 and 1. In our case, binary
just means that we have two numbers to choose from. It will become apparent later why −1 is a better
choice than 0.
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Figure 1: Linearly separable data separated by a straight line (dashed). Crosses rep-
resent negative cases, while circles represent positive cases. The points X1 and X2 are
boundary cases, lying on the solid lines. The line given classifies points in the red area
as negative and in the blue area as positive.

2.2 Separating the data with a best line

Since these points lie on the plane, we can draw a line through them. But what line
should we draw? We would like something that separates the data such that all the
points with negative labels (Yi = −1) are on one side of the line and all the points with
positive labels (Yi = 1) are on the other. If all the negative data points are clustered
together, and all the positive data points are as well, then there may be one or many
lines that would separate the data nicely. In this case, we call the data set linearly sep-
arable. For the rest of this section, you can suppose that our data set is always linearly
separable. So, now we need to find the “best” line.

Although the concept of “best” can sometimes be ambiguous, in this article we will
define it to mean “the line that defines the biggest gap between the negative data points
and the positive data points”. Here, the distance between any two points in the plane
X1 = (x1, y1) and X2 = (x2, y2) is defined as

d
(
(x1, y1), (x2, y2)

)
=
√

(x2 − x1)2 + (y2 − y1)2 .

This best line, which we will call `, can be represented by the equation ax+by+c = 0,
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where a, b and c are some values that we will figure out later. We will further define
two more lines, `+ : ax + by + c = 1 and `− : ax + by + c = −1. These two lines will be
called gutters because they look like the gutters on a road, with the first line we defined
being the centre of the road.

Now, we will give some characteristics of these lines based on our assumption that
the data are linearly separable. Firstly, suppose that Xi = (xi, yi) is a data point with
corresponding label Yi. Then, for our values of a, b and c,

(a) all data points with positive labels Yi = 1 will have axi + byi + c ≥ 1,

(b) all data points with negative labels Yi = −1 will have axi + byi + c ≤ −1,

(c) the data points for which axi + byi + c = 1 or for which axi + byi + c = −1 are
called support vectors3 and there will be at least one positive one and one negative
one.

The first two facts are true by assumption, while we give a short proof for the third one
below. In fact, the characteristics that we just gave are a rigorous definition of what it
means for a data set to be linearly separable. We can go one step further by saying that
a data set is linearly separable if and only if, for all i = 1, . . . , N ,

Yi(axi + byi + c) ≥ 1 .

Proof of point 3. To see why there will always be at least one positive and at least
one negative support vector, we will consider a very simple data set with only two
data points, one negative and one positive. This is the smallest non-trivial data set.
Since it is always possible to draw a straight line between any two points, this data
set is clearly linearly separable. Suppose that we have found a best line and gutters.
Suppose further that there are no negative support vectors. Then the negative gutter
does not pass through the negative data point. However, by assumption the negative
data point lies below the gutter. Hence, the gutter can be moved down until it reaches
this point. This implies that our best line from before was in fact not the best line, as
we have now increased the gap. Therefore, our assumption that there are no negative
support vectors contradicted our assumption that we had found the best line. We can
conclude that the negative data point must be a support vector. By a similar argument,
the positive data point is also a support vector. Hence, there is always at least one
positive support vector and always at least one negative support vector. This idea is
easily extended to larger data sets.

3The word vector refers to something like x = (x1, . . . , xn), where each of x1, . . . , xn are numbers.
Hence, a point in the plane like our data point Xi is a vector where n = 2. We call these points support
vectors since they define the line `; they “support” it like pillars support a roof.
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Our next question is “How do we find the values of a, b and c?”. Recall when we
were discussing how to measure points in the plane. We can use this method to find
the distance between the two lines `+ and `−. Let us call this distance ρ.

We will begin by writing our lines in standard form:

`+ : ax+ by + c− 1 = 0

`− : ax+ by + c+ 1 = 0 .

Since these two lines are parallel, the distance between them is the distance between
their intersection points with a perpendicular line. That is, the distance between their
points of intersection with the line ay − bx = 0. You can verify that this line is indeed
perpendicular to `+ and `− by writing all the equations in the form y = mx + b and
checking that the product of their gradients is equal to −1.

We can solve the two systems of linear equations to obtain the two intersection
points as

A =

(
a(1− c)
a2 + b2

,
b(1− c)
a2 + b2

)
,

B =

(
−a(1 + c)

a2 + b2
,
−b(1 + c)

a2 + b2

)
.

Then

ρ = d(A,B)

=

√(
a(1− c) + a(1 + c)

a2 + b2

)2

+

(
b(1− c) + b(1 + c)

a2 + b2

)2

=

√(
2a

a2 + b2

)2

+

(
2b

a2 + b2

)2

=

√
4(a2 + b2)

(a2 + b2)2

=
2√

a2 + b2
.

Recall that to find the best line, we need to make size of the gap, represented by ρ,
as large as possible. Hence, we need to find a and b such that

√
a2 + b2 is as small as

possible while maintaining that Yi(axi + byi + c) ≥ 1 for all i = 1, . . . , N .
Doing this in general can be quite complicated, so we will skip the details. What

you should take away is that it is possible. In fact, this type of problem is known
as a quadratic programming problem and many calculation and software packages have
built-in methods (algorithms) for solving it.
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2.3 Classifying new data

Great; we have successfully found a line that divides the data that you have so labo-
riously labelled. Now, how do we use the lines we have defined to classify new data,
data that the algorithm has not seen before? Simple: you take the new data point
XN+1 = (xN+1, yN+1) and then look at the sign of axN+1 + byN+1 + c. If

axN+1 + byN+1 + c < 0

then the point will be classified as negative. If, on the other hand,

axN+1 + byN+1 + c > 0

then it will be classified as positive. If, on the third hand,

axN+1 + byN+1 + c = 0

then you have found a data point that the algorithm cannot reliably classify! We call
this sort of data point an outlier.

The careful reader may have already noticed that the first two of the three equations
above are not exactly the same as the equations that we gave for `+ and `− or when we
were characterising a linearly separable data set. Why? Because the line ` is in fact
the one that does the classifying and the two lines `+ and `− are there to help us create
`. When we try and classify a new data point, we see where it lies in the plane with
respect to `; is it above or below `?

2.4 What’s in a name?

So, what exactly are we referring to when we say “SVM”? SVM actually refers to the
idea or concept of being able to find a best line that separates positive and negative
data and being able to use this line to classify new data. The actual set of methods that
we use to do this (i.e., methods for maximising ρ and calculating the sign of axN+1 +
byN+1 + c) along with this idea of a separating line are often referred to as the SVM
algorithm.

The set of steps that you write down when you tell a computer (or anything else
that can do “computations”) what to do is called an algorithm. Hence, SVMs can also be
considered to be a conceptual model for machine learning with associated algorithms
for its implementation.

In reality, this distinction is often ignored and you will most likely see people refer
to SVMs as an algorithm or set of algorithms, a technique or an idea, concept or model.

In practice, our data are often not 2-dimensional. Instead, consider some more
general p-dimensional data. That is, Xi = (x1, . . . , xp) for some p ≥ 2. Then, the SVM is
the idea of creating a (p−1)-dimensional separating hyperplane that we can use to classify
new data, analogously to the above. Because of this, SVMs are part of a broader class
of algorithms or ideas called “linear classifiers” which all attempt to classify data using
the idea of a separating line.
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2.5 Further problems

Recall the concept of outliers introduced above. We would like to modify our algo-
rithm so that it can still work. When Corinna Cortes and Vladimir Vapnik published
a modern version of the technique in 1995 [5], they developed so-called soft-margin
SVMs, which allow a few of those outliers to pollute the data set, while still gen-
erating a relatively good line that separates the data. The next problem was deal-
ing with sets for which the data may be too complicated. Although the details are
also quite complicated, this problem is overcome by transforming the data into some
higher dimensional space via what is called the kernel trick, constructing a separating
hyperplane in that higher dimensional space (the higher-dimensional equivalent of our
best line above) and then using that separating hyperplane to classify new data in
much the same way as above. For a nice illustration of this, I recommend this short
video: https://youtu.be/3liCbRZPrZA. In the video, you can see that 2D points
are projected up into 3D space, where a simple plane is then able to separate them.

C Using SVMs to help diagnose Alzheimer’s disease

3.1 Background on Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease primarily affect-
ing the elderly. It is the most common cause of dementia [2], and is characterised by a
decline in memory, language, problem-solving and other cognitive skills [2]. AD was
first diagnosed and presented in 1906 by German physician Alois Alzheimer [1, 17].
Alzheimer’s disease has been subject to substantial scientific enquiry, with roughly
18% of actively publishing neuroscientists having contributed at least one publication
on the topic [22].

It is generally recommended that neuroimaging (CT or MRI) be performed if de-
mentia is suspected. This is to rule out any potentially treatable injuries [13]. How-
ever, neuroimaging as part of the diagnosis of AD also provides valuable data for
further analysis since it gives us information about the patient’s cerebral cortex. The
cerebral cortex is a layer surrounding the brain, which varies between 1 and 5 millime-
tres thick [11, p.324] [20]. Reduction in the thickness of the cerebral cortex and other
associated regions has been identified in patients with AD, however, this can also occur
due to other illnesses [10].

Lerch et al. identified nine regions of the cerebral cortex whose changes in thickness
are important when it comes to diagnosing AD [14]. By using these nine important
regions, we can perform an analysis of MRI scans taken from two studies on AD. We
will apply our idea of a SVM to classify data from clinical trials of AD.
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3.2 Applying the SVM model to MRI data

To begin, we need to transform the MRI data into something a computer can use. Since
we are interested in the thickness of the cerebral cortices, we will use the average thick-
ness of the regions as our numbers. Then, each data point Xi =

(
x
(i)
1 , . . . , x

(i)
9

)
is a

vector in R9. That is, Xi lies in the 9-dimensional plane. As before, the corresponding
label Yi will be either −1 or 1, with −1 corresponding to controls (i.e., patients without
AD) and with 1 corresponding to patients who have been diagnosed as having AD.

If we assume that our data set is linearly separable, then we are now looking for
the 9-dimensional equivalent of a straight line, which is an 8-dimensional surface. Let
us call this surface L : a1x1 + · · · + a9x9 + a10 = 0. Then, as in the same way as in our
initial 2-dimensional case, we must maximise

ρ =
2√

a21 + · · ·+ a29

subject to Yi
(
a1x

(i)
1 + · · · + a9x

(i)
9 + a10

)
≥ 1 for all i = 1, . . . , N , where we assume that

our data set is linearly separable.
As I said above, real-world data is most likely quite messy and not necessarily

linearly separable. In fact, the data that we used are not linearly separable. Hence,
we will make use of soft-margins and the kernel trick (although you will not see any
details of this here).

3.3 Testing the model

To see how well our algorithm performs, we need some way of testing it. To do this,
we will split our data up and reserve some of it for training, called the training data
set, and use the rest for testing, called the testing data set. If we repeat this many times
and divide up the data differently each time, we can get an average of how well the
algorithm can correctly classify MRI scans from new patients.

We can present this information quickly in the form of a table. “Training size”
represents the percentage of data used to train the algorithm; the remainder was used
for testing. “Testing CCR” gives the percentage of testing data correctly classified by
the algorithm (i.e., the correct classification rate). It is defined simply by

CCR =
number of testing data points correctly classified

total number of testing data points
.

“Support vectors” gives the average number of support vectors, while “Percentage SV”
is the percentage of training data points that were used as support vectors. The number
of support vectors gives an indication of how well the SVM performed [4, 12, 23] since
the more training data points were used as support vectors, the more likely overfitting
was to have occurred. Overfitting is a problem since it means that the algorithm was
too sensitive and was not able to generalise well.
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Table 1: Performance of the SVM algorithm on the ADNI data set (100 scans) averaged
over 100 runs.

Training size 40% 50% 60% 70%

Testing CCR 86% 89% 91% 91%

Support vectors 9 10 10 11

Percentage SV 23% 20% 17% 16%

Table 2: Performance of the SVM algorithm on the MIRIAD data set (193 scans) aver-
aged over 100 runs.

Training size 40% 50% 60% 70%

Testing CCR 94% 95% 95% 96%

Support vectors 8 9 9 10

Percentage SV 10% 9% 7% 7%

You can see that the SVM algorithm performed very well on the data sets, with all
the testing CCR results for the MIRIAD study above 90%. This is probably due to the
fact that the MIRIAD data set was almost twice as large as the ADNI data set, so the
algorithm had more examples to learn from. This is another important fact; the quality
and size of your training data set will determine how accurate your algorithm can be.

Since the data points live in R9, I cannot show you exactly what the SVM would
look like in that space. What I can show you instead is what the SVM looked like when
we considered only two regions at a time (that is, we looked at only two regions so
that we could plot them in the Cartesian plane). Because we used soft-margins and
the kernel trick for our messy data, the lines drawn are not straight (but they would be
straight in their native high-dimensional space!). Healthy controls are light blue dots;
AD patients are red dots. Support vectors are circled. The purple region is the negative
region (healthy) and the green region is positive (AD).

D Conclusion

SVMs are a widely-used technique for classification of data because they are easy to
implement and are reliable and accurate. We have shown that using a SVM on rel-
atively small datasets for AD can lead to a quite good rate of correct classifications.
Perhaps SVMs and/or other machine learning techniques should be adopted for reg-
ular use by clinicians in order to reduce the time between diagnosis and treatment of
AD and other diseases for which medical imaging data is readily available.
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Figure 2: The 2-dimensional regions defined by the SVM for the ADNI data.
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Figure 3: The 2-dimensional regions defined by the SVM for the MIRIAD data.
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