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From binomial coefficients to primes – Chebyshev revisited

Liangyi Zhao1

Abstract

In this paper, we give upper and lower bounds for the number of primes not
exceeding x via elementary means using binomial coefficients.

1 Introduction

An integer p ≥ 2 is said to be a prime number (or prime) if it is only divisible by 1 and
itself. By the Fundamental Theorem of Arithmetic, every positive integer has a unique
(up to re-arrangements of the factors) factorisation into primes. It has been known
since at least Euclid’s time that there are infinitely many primes. Indeed, n! + 1 must
have a prime divisor greater than n. So, there are arbitrarily large prime numbers and
hence an infinitude of them.

After Euclid, a natural question to ask is, how infinite are the primes? That is, given
x ∈ R, how many primes are there not exceeding x? It took more than twenty centuries
to make any significant progress on this question. Let π(x) be the number of primes
less than or equal to x. For instance,

π(1) = 0 , π(3) = 2 , π(10) = 4 , π(1, 000, 000, 000) = 50, 847, 534 .

Obviously, π(x) < x for all x and one can reverse engineer Euclid’s proof to show that

π(x) ≥ ln lnx . (1)

This is not a very impressive minorant as ln ln 1, 000, 000, 000 = 3.03 . . . 2. We shall not
give a proof of (1) here as it will be greatly superseded by the bounds presented later.

It turns out that π(x) is well-approximated by the function x/ lnx for large values
of x. A.-M. Legendre was the first to prove that

lim
x→∞

π(x)

x/ lnx
= 1 .

This is known as the Prime Number Theorem. Gauss wrote in 1849 that he had discov-
ered it in a slightly different form during his boyhood in 1792. A major break-through

1Liangyi Zhao is a Senior Lecturer at the School of Mathematics and Statistics, UNSW Sydney.
2It has been variously said that ln lnx is a function that tends to infinity as x→∞ but has never been

observed to do so and that “log log . . . ” is what an analytic number theorist intones while drowning.
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came in 1860. Georg Friedrich Bernhard Riemann, a newly elected member of the
Berlin Academy of Sciences who had to report on his most recent research, sent an
article titled Über die Anzahl der Primzahlen unter einer gegebenen Grösse3 to the
academy. An English translation of this paper can be found in [1]. Considering that
it was his only paper in number theory and changed the direction of mathematical re-
search in very significant ways, it is now appropriately and better known as Riemann’s
Memoir.

The key contribution that Riemann made was the injection of complex analysis into
the study of primes. A number of conjectures were made in his memoir. Among other
things, he proposed that for x ≥ 2, the values of π(x) resemble those of

Li(x) =

x∫
2

1

ln t
dt .

We leave it to the reader to check, using integration by parts, that Li(x) and x/ lnx
are good approximations of each other. In 1896, Hadamard and de la Vallée Poussin
proved independently this form of the Prime Number Theorem. In fact, π(x) coin-
cides with Li(x) significantly more than with x/ lnx. The following table evinces this
difference in the quality of the approximations. This contrast can also be made mathe-
matically precise.

x π(x) π(x)− x/ lnx π(x)− Li(x)
10 4 −0.3 2.2
102 25 3.3 5.1
103 168 23 10
104 1229 143 17
105 9592 906 38
106 78498 6116 130
107 664579 44158 339
108 5761455 332774 754
109 50847534 2592592 1701
1010 455052511 20758029 3104

It is certainly remarkable that π(1010) is about half a billion and Li(1010) is off by
only three thousand or so. Note also that π(x)−Li(x) generally has half the number of
digits as π(x). This phenomenon persists for larger values of x and has to do with the
Riemann Hypothesis, the only yet unproven conjecture in Riemann’s Memoir.

In this paper, we present an elementary proof of upper and lower bounds for π(x).
Clearly, a lower bound for π(x) is more important in this context, since it enables us
to conclude that there must at least be a certain number of primes less than x. The
bounds we prove here are of the correct order of magnitude (that is, best possible up
to a constant multiple). The ideas of the proof were first developed by P.L. Chebyshev

3On the number of primes less than a given magnitude
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in 1852 and are rather simple. We only need to examine a special binomial coefficient
and its prime divisors.

From now on, we shall use the convention that p always denotes a prime number.
Using this convention, we can express π(x) as follows.

π(x) =
∑
p≤x

1 .

In fact, as we shall presently see, it will often be more convenient to count primes with
a different weight. We shall work with

θ(x) =
∑
p≤x

ln p

and extract the bounds for π(x) from those for θ(x).
We will prove the following theorem.

Theorem 1. If x ≥ 854, then

ln 2

7
x < θ(x) ≤ (4 ln 2)x .

From Theorem 1, we readily deduce the following result.

Corollary 2. For all x ≥ 2, we have

ln 2

7

x

lnx
≤ π(x) ≤ (8 ln 2 + 2)

x

lnx
. (2)

Proof. One can easily find the list of primes less than 8544. From this, π(x) can be
evaluated for all x ≤ 854 and the bounds in (2) hold for all such values of x. Thus, we
may assume that x ≥ 854 in the sequel.

We first note that, from Theorem 1,

π(x) lnx =
∑
p≤x

lnx ≥
∑
p≤x

ln p = θ(x) >
ln 2

7
x .

Now, the lower bound follows by dividing lnx on both sides. The upper bound for
π(x) is a bit more involved. Observe that

θ(x) ≥
∑
√
x<p≤x

ln p ≥ ln
√
x
∑
√
x<p≤x

1 =
1

2
lnx

∑
√
x<p≤x

1 =
1

2
lnx

(
π(x)− π(

√
x)
)
.

So, we have

π(x) ≤ 2θ(x)

lnx
+ π(
√
x) ≤ 8 ln 2

x

lnx
+
√
x .

4See https://primes.utm.edu/lists/small/1000.txt, for example.
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One can easily check on a graphing calculator that
√
x < 2x/ lnx for x ≥ 2. Therefore,

we get that, if x ≥ 2, then
π(x) ≤ (8 ln 2 + 2)

x

lnx
.

This completes the proof. 2

Now, we can also prove the following important fact.

Corollary 3. As x tends to∞, ∑
p≤x

1

p
→∞ .

Proof. We note that π(n)−π(n−1) is 1 if and only if n is prime and zero otherwise. So,∑
p≤x

1

p
=
∑
n≤x

π(n)− π(n− 1)

n

=
π(x)

[x]
+
∑

n≤x−1

π(n)

(
1

n
− 1

n+ 1

)
≥
∑

n≤x−1

π(n)

(
1

n
− 1

n+ 1

)
,

where [x] denotes the integer part of x. Using the lower bound in (2) and the observa-
tion that 2n ≥ n+ 1 for all n ∈ N, the last sum above is∑

n≤x−1

π(n)

n(n+ 1)
≥ ln 2

7

∑
2≤n≤x−1

1

(n+ 1) lnn
≥ ln 2

14

∑
2≤n≤x−1

1

n lnn
.

Now, the integral test tells us that this last sum tends to ∞ as x tends to ∞, and the
proof is complete5. 2

From the corollaries, we see that there are a lot of primes. More specifically, there are
only about

√
x squares in [1, x] and the sum of the reciprocals of the squares converges

to π2/6. However, primes are a lot more numerous in the same interval and the sum of
their reciprocals diverges to infinity.

Finally, upon a careful inspection of the proofs on these pages, a conscientious
reader will realize that she can improve the constants in all of the results. We have
not strived for the best constants as those are clearly given by the Prime Number The-
orem whose proof will be much more involved and require a long preface. It is our
hope that by revisiting these simple and elegant ideas of Chebyshev, we can kindle
some interests in number theory in a general audience. For the enthused reader who
would like to learn more, we refer her to [1].

5In fact, the proof here actually gives that the sum of the reciprocals of primes not exceeding x is at
least c ln lnx for some positive absolute constant c.
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2 Preliminaries

Our proof of Theorem 1 uses the properties of a special binomial coefficient. Let

an =

(
2n

n

)
.

We know that
an =

(2n)!

(n!)2
=

(n+ 1) · · · (2n)
1 · 2 · · ·n

.

Let ordpn be the highest power of p that divides n; that is, pordpn divides n but pordpn+1

does not. For example,

ord224 = 3 , ord324 = 1 , ord524 = 0 .

One can easily check that, for all n, j ∈ N,

n =
∏
p

pordpn and ordpn
j = j · ordpn . (3)

Furthermore, if a, b, a/b ∈ N, then

ordp
a

b
= ordpa− ordpb . (4)

We shall use the notation [x] to denote the integer part of x ∈ R and {x} the fractional
part of x, so that

[x] = max
n∈Z
{n ≤ x}

and {x} = x− [x]. Clearly, [x] ≤ x and 0 ≤ {x} < 1 for all x.

Lemma 4.
ordpn! = [n/p] + [n/p2] + [n/p3] + · · · .

Proof. Note that the sum is finite as [n/pk] = 0 if pk > n. Now, [n/pk] gives precisely the
number of multiples of pk not exceeding n. Let m ∈ N and m ≤ n. If ordpm = k, then
m gives k factors of p in n!, and m is a multiple of pj for all 1 ≤ j ≤ k. The contribution
of m to ordpn! is accounted for exactly k times in [n/pj] for 1 ≤ j ≤ k. 2

Lemma 5. Let x > 0. Then [2x]− 2[x] is either 0 or 1.

Proof. If 0 < {x} < 1/2, then 2{x} < 1 and

[2x]− 2[x] = [2[x] + 2{x}]− 2[x] = 2[x]− 2[x] = 0 .

Now, if 1/2 ≤ {x} < 1, then 1 ≤ 2{x} < 2 and

[2x]− 2[x] = [2[x] + 2{x}]− 2[x] = 2[x] + 1− 2[x] = 1 .

This completes the proof. 2
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3 The Upper Bound

First, we prove the upper bound in Theorem 1.
Proof. We certainly have

22n = (1 + 1)2n =
2n∑
j=1

(
2n

j

)
> an =

(
2n

n

)
=

(n+ 1) · · · (2n)
1 · 2 · · ·n

. (5)

Recall that an is definitely an integer. Moreover, if p is a prime number with n < p < 2n,
then p appears in the numerator of

(n+ 1) · · · (2n)
1 · 2 · · ·n

(6)

but p does not divide the denominator, which is just n!, since n < p and p is prime. So,
p is a divisor of an if n < p < 2n. Therefore, an must be a multiple of the product of all
such values of p, and, hence,

an ≥
∏

n<p<2n

p .

Together with (5), the above inequality gives

22n >
∏

n<p<2n

p .

Now, taking the natural logarithm of both sides, we obtain

2n ln 2 >
∑

n<p<2n

ln p = θ(2n)− θ(n) . (7)

Given any natural number m,

θ(2m) =
(
θ(2m)− θ(2m−1)

)
+
(
θ(2m−1)− θ(2m−2)

)
+ · · ·+ (θ(4)− θ(2)) + (θ(2)− θ(1)) .

Note that θ(1) = 0. By applying (7) to the right-hand side of the above m times, we get

θ(2m) < 2 ln 2
m−1∑
j=0

2j = ln 2
2m+1 − 2

2− 1
< ln 2 · 2m+1 .

Now, given any x > 2, let 2m be the smallest power of 2 greater than or equal to x so
that 2m−1 < x ≤ 2m. We get

θ(x) < θ(2m) < ln 2 · 2m+1 = (4 ln 2)2m−1 < (4 ln 2)x ,

and thus the desired majorant is established.
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4 The Lower Bound

Let us now get the lower bound in Theorem 1.
Proof. Note that

an =

(
2n

n

)
=

(
n+ 1

1

)(
n+ 2

2

)
· · ·
(
n+ n

n

)
≥ 2n ,

as each one of the factors in the product is at least 2. Moreover, for a prime p, let us
consider

ordpan = ordp
(2n)!

(n!)2
= ordp(2n)!− ordp(n!)

2 = ordp(2n)!− 2 · ordp(n!) ,

upon using (3) and (4). Now, Lemma 4 gives

ordpan =
∞∑
j=1

[
2n

pj

]
− 2

∞∑
j=1

[
n

pj

]
=
∞∑
j=1

([
2n

pj

]
− 2

[
n

pj

])
. (8)

Let tp be the largest integer such that ptp ≤ 2n. So,

tp = [lnp 2n] =

[
ln 2n

ln p

]
≤ ln 2n

ln p
. (9)

The summands in (8) are zero when j > tp. So, we have

ordpan =

tp∑
j=1

([
2n

pj

]
− 2

[
n

pj

])
.

By Lemma 5, the summands above are either 0 or 1. By using this fact together with
(9), we conclude that

ordpan ≤ tp ≤
ln 2n

ln p
.

Observe that only primes less than 2n divide an.

2n ≤ an =
∏
p<2n

pordpan ≤
∏
p<2n

ptp .

Taking the logarithm of both sides of the above yields

n ln 2 ≤
∑
p<2n

tp ln p .

From (9), we get

ln 2 · n ≤
∑
p<2n

[
ln 2n

ln p

]
ln p ≤ S1 + S2 ,
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where

S1 :=
∑

p≤
√
2n

[
ln 2n

ln p

]
ln p and S2 :=

∑
√
2n<p<2n

[
ln 2n

ln p

]
ln p ,

say. First,

S1 ≤
∑

p≤
√
2n

ln 2n

ln p
ln p =

∑
p≤
√
2n

ln 2n ≤
√
2n ln 2n .

Now, the summation condition of S2,
√
2n < p < 2n, implies that

1

2
ln 2n < ln p < ln 2n , so that 1 <

ln 2n

ln p
< 2 .

Hence, if
√
2n < p < 2n, then [

ln 2n

ln p

]
= 1 .

Consequently,
S2 =

∑
√
2n<p<2n

ln p ≤ θ(2n)

and we arrive at

ln 2 · n ≤
√
2n ln 2n+

∑
√
2n<p<2n

ln p ≤
√
2n ln 2n+ θ(2n)

or, equivalently,
θ(2n) ≥ ln 2 · n−

√
2n ln 2n .

Now, once again, one can check on a graphing calculator that, for n ≥ 427,

2

3
ln 2 · n >

√
2n ln 2n .

So, if n ≥ 427, then

θ(2n) ≥ ln 2

3
n .

Now, if x ≥ 854 and [x] is even, then [x]/2 = n ≥ 427 and 2n ≤ x < 2n+ 1. Therefore,

θ(x) ≥ θ(2n) ≥ ln 2

3
n >

ln 2

3

x− 1

2
=

ln 2

6
(x− 1) >

ln 2

7
x .

The last inequality is true for all x ≥ 8 (this is easily verifiable by a graphing calculator).
If [x] is odd, then [x+ 1] is even and θ(x) = θ(x+ 1). The above bound gives

θ(x) = θ(x+ 1) >
ln 2

7
(x+ 1) >

ln 2

7
x .

Thus, we have completed the proof of Theorem 1.
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