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A Mean Inequality and Applications Thereof

Marian Maciocha1

The arithmetic mean and the root mean square of real numbers x1, . . . , xn are, resp.,

x1 + · · ·+ xn

n
and

√
x2
1 + · · ·+ x2

n

n
.

The purpose of this note is to show that these means the first mean is always bound
how these two means relate to each other, by way of the inequality in Theorem 1 below,
and to show how this simple inequality can be useful for solving systems of equations.

Theorem 1. ∣∣∣x1 + · · ·+ xn

n

∣∣∣ ≤√x2
1 + · · ·+ x2

n

n

with equality if and only if x1 = x2 = · · · = xn.

Proof. Since

0 ≤
n∑

i,j=1

(xi−xj)
2 =

n∑
i,j=1

(x2
i+x2

j−2xixj) = 2n
n∑

i=1

x2
i−2

n∑
i,j=1

xixj = 2n
n∑

i=1

x2
i−2

( n∑
i=1

xi

)2
,

it follows that ( 1
n

n∑
i=1

xi

)2
≤ 1

n

n∑
i=1

x2
i .

Furthermore, equality holds if and only if

0 =
n∑

i=1

n∑
j=1

(xi − xj)
2

which in turn is true exactly when xi = xj for all i, j = 1, . . . , n.

Theorem 1 is a special case of Chebyshev’s Sum Inequality which states that

( 1
n

n∑
i=1

xi

)( 1
n

n∑
i=1

yi

)
≤ 1

n

n∑
i=1

xiyj

whenever x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn; this more general inequality can
be proved be modifying the above proof slightly (feel free to try to do this!).

1Marian Maciocha is an electronics engineer living in Wrocław, Poland.
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For the case in which there are just n = 2 variables, Theorem 1 is easily seen in at
least two visual ways, below.
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In the first two figures above, the grey parts have total area a2 + b2 and 2
(
a+b
2

)
, respec-

tively, where, without loss of generality, a ≥ b. They share the same three light-grey
squares but differ in their dark-grey rectangles; these are bigger in the first figure than
in the second figure, so the total grey area of the first figure is bigger than the total grey
area of the second:

a2 + b2 ≥ 2
(a+ b

2

)2
,

so ∣∣∣a+ b

2

∣∣∣ ≤√a2 + b2

2
.

In the third figure, the two points A and B on the parabola y = x2 have coordinates
(a, a2) and (b, b2), say. The midpoint M between these two points has coordinates(
a+b
2
, a

2+b2

2

)
and lies vertically above a point P on the parabola. Since P has coordi-

nates
(

a+b
2
,
(
a+b
2

)2), we again see that

(a+ b

2

)2
≤ a2 + b2

2
.

Applications

We now present three examples to demonstrate how Theorem 1 can sometimes be used
to solve systems of equations.

Example 1. Let us find all real solutions to the following system of equations:

a− 3b− 5c+ 7d = 420 and a2 + 9b2 + 25c2 + 49d2 = 44100 .

Set x1 = a, x2 = −3b, x3 = −5c, x4 = 7d, and n = 4. Then

x1 + · · ·+ xn

n
=

a− 3b− 5c+ 7d

4
=

420

4
= 105
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and √
x2
1 + · · ·+ x2

n

n
=

√
a2 + 9b2 + 25c2 + 49d2

4
=

√
44100

4
=
√
11025 = 105 ,

so
x1 + · · ·+ xn

n
=

√
x2
1 + · · ·+ x2

n

n
.

By Theorem 1, x1 = x2 = · · · = xn = 105; that is, a = −3b = −5c = 7d = 105. Hence,

a = 105 , b = −35 , c = −21 , d = 15 .

Example 2. Let us find all real solutions to the following system of equations:

a− b+ 3c+ 5d = −100 and a2 + b2 + 26c2 + 89d2 = 1764 .

Set x1 = a, x2 = −b, x3 = 3c, x4 = 5d, and n = 4. Then

|x1 + · · ·+ xn|
n

=
|a− b− 3c+ 5d|

4
=
| − 100|

4
= 25

and√
x2
1 + · · ·+ x2

n

n
=

√
a2 + b2 + 9c2 + 25d2

4
≤
√

a2 + b2 + 26c2 + 89d2

4
=

√
1764

4
= 21 ,

so
x1 + · · ·+ xn

n
= 25 > 21 ≥

√
x2
1 + · · ·+ x2

n

n
.

By Theorem 1, this inequality is not true for any real values of x1, x2, x3, x4; in other words,
the system of equations has no solution.

Example 3. Let us find all real solutions to the following system of equations:

−a1 + a2 − a3 + · · ·+ (−1)nan = n and a21 + a22 + a23 + · · ·+ a2n = n .

Set x1 = −a1, x2 = a2, x3 = −a3, . . ., xn = (−1)nan. Then

x1 + · · ·+ xn

n
=
−a1 + a2 − a3 + · · ·+ (−1)nan

n
=

n

n
= 1

and √
x2
1 + · · ·+ x2

n

n
=

√
a21 + a22 + · · ·+ a2n

4
=

√
n

n
=
√
1 = 1 ,

so
x1 + · · ·+ xn

n
=

√
x2
1 + · · ·+ x2

n

n
.

By Theorem 1, x1 = x2 = · · · = xn = 1; that is, ak = (−1)k for k = 1, . . . , n.

3


