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Solutions 1561–1570
Q1561 Let a, b, c be positive numbers for which

a + b

c
= 2018 and

b+ c

a
= 2019 .

Evaluate
a+ c

b
.

SOLUTION We have

a+ b+ c

c
=

a + b

c
+ 1 = 2019 ,

a + b+ c

a
=

b+ c

a
+ 1 = 2020

and so

b

a+ b+ c
=

a+ b+ c

a+ b+ c
− a

a+ b+ c
− c

a + b+ c
= 1− 1

2019
− 1

2020
.

Therefore,
a+ c

b
=

a+ b+ c

b
− 1 =

1

1− 1
2019

− 1
2020

− 1 =
4039

4074341
.

Q1562 In a parallelogram PQRS, let M be the midpoint of PQ.
Find the cosine of ∠RMS in terms of the lengths PM and PS and the angle ∠MPS.

SOLUTION We write a = PM , b = PS and α = ∠MPS; also c1 = MS and c2 = MR.

P

Q R

S

M

a

b

α

c1

c2

By the cosine rule, we have

c21 = a2 + b2 − 2ab cosα

c22 = a2 + b2 − 2ab cos(π − α)

= a2 + b2 + 2ab cosα .

Note that these equations give

c21 + c22 = 2a2 + 2b2 and c21c
2
2 = (a2 + b2)2 − 4a2b2 cos2 α .

Now since PQRS is a parallelogram RS = 2a; using the cosine rule again,

4a2 = c21 + c22 − 2c1c2 cos β ,
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where β = ∠RMS is what we wish to find. Solving this equation and using the previ-
ous equations to eliminate c1 and c2 gives

cos β =
c21 + c22 − 4a2

2c1c2
=

2b2 − 2a2

2
√

(a2 + b2)2 − 4a2b2 cos2 α

=
b2 − a2

√

(a2 + b2)2 − 4a2b2 cos2 α

=
b2 − a2√

a4 − 2a2b2 cos 2α+ b4
.

Q1563 Given a positive integer n, add the digits of n; then add the digits of the result;
and so on, until you obtain a one–digit number. This one–digit number is called the
terminating sum of n.1 Find the terminating sum for

n = 20182017
2016

···

3
2
1

.

SOLUTION We write

m = 20172016
···

3
2
1

and p = 2016···
3
2
1

,

and note for future use that

2018 = 9a+ 2 and 2017 = 6b+ 1

for certain integers a, b (in fact a = 224 and b = 336, though this is irrelevant). Now if
two numbers differ by a multiple of 9 then their terminating sums are the same. By the
Binomial Theorem, we have

n = (9a+ 2)m = 9m +

(

m

1

)

9m−1 × 2 + · · ·+
(

m

m− 1

)

9× 2m−1 + 2m ,

so n and 2m differ by a multiple of 9 and we need to find the terminating sum of 2m.
The terminating sums of powers of 2 are

2 , 4 , 8 , 7 , 5 , 1 , 2 , 4 , 8 , 7 , 5 , 1 , (∗)
with the same six values repeating indefinitely; so we need to find the remainder when
m is divided by 6. Using the Binomial Theorem again,

m = 2017p = (6b+ 1)p = 6p +

(

p

1

)

6p−1 + · · ·+
(

p

p− 1

)

6 + 1 ,

which is a multiple of 6 with remainder 1. So the terminating sum of 2m, and hence of
n, is the first number in the list (∗), that is, 2.

Comment. The ideas behind this solution can be written much more simply when you
have learned about congruence arithmetic .

1For more information on these sums, see the Parabola article
Terminating Sum of Digits of a Positive Integer by Sin Keong Tong.
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https://www.parabola.unsw.edu.au/2010-2019/volume-54-2018/issue-1/article/terminating-sum-digits-positive-integer


Q1564 Write two numbers a, b in a row on a piece of paper. Form a list by writing
their sum between them. Form another list by writing between every pair of adjacent
numbers their sum. Repeat. For example, if a = 1 and b = 2, then we initially get

1 , 2 .

Our first list is then
1 , 3 , 2 ,

our second list is
1 , 4 , 3 , 5 , 2 ;

and so on. What is the sum of the numbers in the nth list?

SOLUTION Let sn be the sum of the nth list. Clearly s0 = a + b. Given the num-
bers in one list, the numbers in the next list include all the same numbers, interspersed
with extra numbers. These extra numbers are formed by adding all the previous num-
bers twice each, except for the first and last numbers which are used only once each.
Therefore,

sn = 3sn−1 − (a + b) .

To solve this, write sn = tn + c, where c is a constant. Then we have

tn = 3tn−1 + 2c− a− b .

Choosing c = 1
2
(a+ b) makes this very easy to solve: tn = 3tn−1, so tn = 3nt0. Therefore,

the sum of the numbers in the nth list is

sn = tn + c = 3nt0 + c = 3n(a+ b− c) + c =
(3n + 1)(a+ b)

2
.

Q1565 Two squares on a (normal 8 × 8) chessboard are said to be neighbours if they
can be reached from one another by means of at most two horizontal/vertical steps, or

at most one horizontal/vertical and one diagonal step. Find the maximum number of
squares that can be chosen on a chessboard such that no two are neighbours.

SOLUTION It’s easy to get 10 by trial and error, as, for example, in the diagram.
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To show that 11 is impossible, divide the board into eleven blocks as shown by the
coloured regions.

a b c d e f g h
1
2
3
4
5
6
7
8

It is easy to see that two squares in the same region must be neighbours; so, to get 11
squares for which no two are neighbours, we must take exactly one in each block. By
symmetry, we may assume that we choose the square at d5. This rules out the squares
shown in grey in the next diagram.

a b c d e f g h
1
2
3
4
5
6
7
8

Finally, we can’t take a5 as it eliminates all the remaining squares in the green block on
the left hand side; so we must take a6; the only available square in the top left yellow
block is now c8; and this makes it impossible to choose either of the green squares along
the top edge. So, it’s impossible to choose 11 squares such that no two are neighbours.

Q1566 Let m and n be positive integers with m 6= n. Prove that m4 + 3n4 can be
written as the sum of the squares of three non–zero integers.

SOLUTION The coefficient of n4 suggests that we try something like this:

m4 + 3n4 = (n2 + a)2 + (n2 + b)2 + (n2 + c)2 ,

where a, b, c are expressions in terms of m,n. Expanding, we get

m4 + 3n4 = 3n4 + 2(a+ b+ c)n2 + a2 + b2 + c2 .

Now somehow we have to get an m4 term on the right hand side. It clearly can’t come
from the terms containing n, so it looks like one of the terms a2, b2, c2 should be m4. It
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obviously doesn’t matter which one we go for, so let’s say c2 = m4. Taking c = m2

doesn’t seem to lead anywhere (try it!), so we explore c = −m2. This gives

m4 + 3n4 = m4 + 3n4 + 2(a+ b−m2)n2 + a2 + b2 .

If we remove the a and b from the middle term by choosing b = −a we have

m4 + 3n4 = m4 + 3n4 − 2m2n2 + 2a2 ,

and it is now clear that we get what we want by taking a = mn. So, to sum up, we
have found that

m4 + 3n4 = (n2 +mn)2 + (n2 −mn)2 + (n2 −m2)2 ;

it is easy to check this by multiplying out the right hand side and, since m, n are un-
equal positive integers, it is clear that each bracketed term on the right hand side is a
non–zero integer.

Q1567 Given a positive integer n ≥ 2, find unequal real numbers a, b, not integers,
such that

a− b , a2 − b2 , . . . , an − bn

are all integers.

SOLUTION We have

b =
(a+ b)− (a− b)

2
=

1

2

(a2 − b2

a− b
− (a− b)

)

.

Since a2− b2 and a− b are integers, this is a rational number; and x = a− b is an integer;
so we can write

b =
y

z
and a = x+

y

z
,

where x, y, z are integers with z > 0. Expanding by the Binomial Theorem,

am − bm = xm +

(

m

1

)

xm−1 y

z
+ · · ·+

(

m

k

)

xm−k
(y

z

)k

+ · · ·+
(

m

m− 1

)

x
(y

z

)m−1

.

Considering all these expressions for m = 1, 2, . . . , n, the maximum power of z in any
denominator is zn−1; and every term has at least one x in the numerator. So, if x is a
multiple of zn−1, then every expression am− bm will be a sum of integers, and therefore
an integer. Specifically, choose y = 1 (may as well keep things simple!) and z = 2 (to
make sure that a and b are not integers) and x = 2n−1. Then we have

am−bm = 2m(n−1)+

(

m

1

)

2(m−1)(n−1)−1+ · · ·+
(

m

k

)

2(m−k)(n−1)−k+ · · ·+
(

m

m− 1

)

2n−m .

In this expression every term has k ≤ m− 1 ≤ n− 1; so

(m− k)(n− 1)− k ≥ (n− 1)− k ≥ 0 .
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In other words, the powers of 2 in the expression always occur with non–negative
exponents; therefore they are integers; therefore am − bm is an integer; and this is what
we wanted. Our solution (one of many possibilities) is

a = 2n−1 +
1

2
, b =

1

2
.

Q1568 Draw the graph of sin(y + |y|) = sin(x+ |x|).
SOLUTION Remember that |x| = x if x ≥ 0, and |x| = −x if x ≤ 0. In the first quadrant
(including the axes) we have x ≥ 0, y ≥ 0; so the equation becomes sin 2y = sin 2x. This
is equivalent to

2y = 2x+ 2kπ or 2y = −2x+ (2k + 1)π , k ∈ Z ,

that is, a set of parallel lines y = x + kπ of gradient 1, together with a set of parallel
lines y = (k + 1

2
)π − x of gradient −1. The other quadrants are easier:

• in the second quadrant we have x ≤ 0, y ≥ 0; so we have sin 2y = 0, which is a set
of horizontal lines y = 1

2
kπ;

• in the third quadrant we have x ≤ 0, y ≤ 0; so the equation is 0 = 0, which is true
for all points in the third quadrant;

• in the fourth quadrant we have x ≥ 0, y ≤ 0; so 0 = sin 2x, a set of vertical lines
x = 1

2
kπ.

So the graph is as shown (including the negative halves of the x and y axes, but not the
positive halves).

0 x

y

π

π

Q1569 We have a row of n coins. A “move” consists of selecting a coin which is tails
up, and turning over both that coin and the one (if any) immediately to its left. An
example of a sequence of three moves involving five coins is

HTTTT → HTTHH → THTHH → HHTHH .
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Prove that if we are allowed to choose the initial arrangement of coins, then it is possi-
ble to make 1

2
n(n+ 1) moves before getting stuck; but that it is never possible to make

more than this many moves.

SOLUTION Give a coin in position k from the left a value of k if it is tails (and nothing
if it is heads). Give each arrangement of coins a value which is the sum of the values
of its individual coins. For example, the four positions above have values 14, 5, 4, 3. A
move changes the value of a position as follows:

• if the selected coin is in position 1 (the left–hand end of the row), turning this coin
from tails to heads decreases the value of the position by 1;

• if the selected coin is tails in position k > 1 and the coin in position k− 1 is heads,
then the move loses value k in position k but gains k − 1 in position k − 1, for an
overall decrease in value of 1;

• if the selected coin is tails in position k > 1 and the coin in position k − 1 is tails,
then the move decreases the value of the position by 2k − 1.

Now the “most valuable” position is a row of tails, with score

1 + 2 + · · ·+ n =
1

2
n(n + 1) ,

and the least valuable is a row of heads with score 0, at which point we are stuck and
cannot make any further moves. Since, at best, the value of a position decreases by 1
at each step, it is impossible to make more than 1

2
n(n+1) moves. To achieve this many

moves, we must start with a row of tails and avoid moves that decrease the position
value by more than 1. This can be done by always selecting the leftmost tail: it will
then have a head (or nothing at all) on its left, and the move will decrease the value
by 1.

Q1570 Find all solutions of the simultaneous equations

2x = z(3x2 + 3y) , 2 = z(3x+ 3y2) , x3 + 3xy + y3 = 5 .

SOLUTION The first equation minus x times the second gives

0 = 3zy(1− xy) .

The second equation in the question implies that z 6= 0, so either y = 0 or xy = 1.

• If y = 0 then the third equation gives x = 3
√
5 and either of the others gives

z = 2/3x.

• If xy = 1 then the third equation gives x3+ y3 = 2. Multiplying by x3, rearranging
and using xy = 1 again gives x6−2x3+1 = 0; this can be factorised as (x3−1)2 = 0
and so the only (real) solution is x = 1; then we have y = 1 and z = 2/(3x+ 3y2).

Therefore the solutions are

x =
3
√
5 , y = 0 , z =

2

3 3
√
5

and x = 1 , y = 1 , z =
1

3
.
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