YOUR LETTERS

Dear Sir,

Recently I found the following relationships between n! and nⁿ while working through sequences and series:

First,
$$0 \le n!/n^n = \frac{1 \cdot 2 \cdot 3 \cdot ... (n-1) \cdot n}{n \cdot n \cdot n \cdot n}$$

< $1/n$ for $n > 2$.

Thus
$$\lim_{n\to\infty} n!/n^n = \lim_{n\to\infty} 1/n = 0$$
.

Now, by considering the area under the curve y = log x and the areas of the rectangles shown in the figure, we can see that

log n!

$$= \log 2 + \log 3 + \ldots + \log n$$

= sum of rectangles between 2 and n + 1 below curve

$$< \int_{1}^{n+1} \log x \, dx$$

$$= (n + 1) \log (n + 1) - n$$

Similarly, log n! = sum of rectangles between 1 and n above curve

$$> \int_{1}^{n} \log x \, dx = n \log n - n + 1$$

Thus
$$1 - 1/(\log n) + 1/(n \log n) < (\log n!)/(\log n^n)$$

 $< (1 + 1/n) \log (n + 1)/(\log n) - 1/(\log n)$

as $n \rightarrow \infty$, the left hand and right hand expressions tend to 1, and so

$$\lim_{n \to \infty} (\log n!)/(\log n^n) = 1.$$

$$\lim_{n \to \infty} \log n! = \lim_{n \to \infty} \log n^n$$

THUS

$$\lim_{n \to \infty} n! = \lim_{n \to \infty} n^n$$

$$\lim_{n \to \infty} n!/n^n = 1.$$

and so

This is a different answer to the previous one. How do you explain this contradiction?

John Rogers,
Knox Grammar.

[The explanation is given on page 27 — Editor.]

Dear Sir,

I have discovered an interesting theorem which appears to have several applications. It is:

a number out of sight of the second player, who the

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \ldots + {}^{n}C_{n} = 2^{n}$$

where ${}^{n}C_{r}$ means the number of ways of selecting r articles from n articles.

To prove the theorem, you use Pascal's triangle:

Each element in the triangle is the sum of the two elements diagonally above it.

i.e.
$${}^{n}C_{r} = {}^{n-1}C_{r-1} + {}^{n-1}C_{r}$$

Thus each element in the (n-1)st row contributes twice to the sum of the elements in the n'th row and so (by using induction) we can see that

$${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \ldots + {}^{n}C_{n} = \text{sum of elements in n'th row} = 2^{n}$$
.

One application of this result is a means of proving that a set of n elements has 2^n subsets (see question 3 of the Senior Division of the Mathematics Competition 1975). No. of subsets = no. of subsets with 0 elements + no. of subsets with 1 element + ... + no. of subsets with n elements = ${}^nC_0 + {}^nC_1 + ... + {}^nC_n = 2^n$.

element + ... + no. of subsets with n elements $= {}^{n}C_{0} + {}^{n}C_{1} + ... + {}^{n}C_{n} = 2^{n}$. Another application is to a matrix A with $A^{2} = A$. Since $A^{2} = A$, we can see that $A = A^{2} = A^{3} = ... = A^{n}$. Thus

$$(I+A)^n = {}^nC_0I + ({}^nC_1 + {}^nC_2 + ... + {}^nC_n)A = I + (2^n-1)A.$$

Does anyone else know other problems in which this is useful?

Barry Jay, North Sydney B.H.S.

[An easier proof is to expand $2^n = (1 + 1)^n$ by the Binomial Theorem — Editor.]