MATHEMATICAL GAMES

Solitaire Company of the Solitaire Company of

Solitaire is a game for one person. It is played with pegs or marbles on a board with holes in it, in the following pattern:

				O	_			
			0	0	0			
0	0	0	0	0	0	0	0	0
0					_	10.77	0	
							0	
			0	0	0			

The game begins with every hole occupied except for the central hole. A move is made by jumping one peg over another next to it, and removing the peg over which it jumped. Thus for example, if the position were • • o, the peg on the left could jump over the middle peg which would then be removed, leaving the position o o •. Only horizontal and vertical jumps are allowed. The aim of the game is to end up with only one peg on the board (in the central hole). The game ends when no further move is possible.

You should devise your own notation for the game. If you succeed in ending up with just one peg in the centre, send us your solution. We will give \$1 plus one year's free subscription to Parabola for each of the first ten correct solutions, and publish the best in the next issue.

Questions:

- (1) What is the greatest number of moves that a game of solitaire can last?
- (2) How many pegs can you put on the board so that no move is possible (other than 33 pegs which would clog the board)?
- (3) What is the greatest number of pegs you can have on the board at the end of an actual game? (Again, a prize of \$1 plus one year's free subscription to Parabola will be sent to anyone who sends a solution with more remaining pegs than any other reader.)

Computer Art Wayshall has agota saidson sit north 69 asta time has

In our last issue, we described the "rules" for producing patterns, and invited our readers to send us their results, but no-one has sent any in yet. If you have a pattern, please send it so that we can print it in the next issue.

Mastermind

This game was described in Vol. II No. 3 where it was suggested that we might discuss the possibility of programming a calculator for playing the game. Since then, we have received three programmes: the first from Mr P. Sherley (a teacher at Riverstone High), the second from Mr P. Cox of Wahroonga and the third from Mr T. Croucher and Mr A. Smyth (teachers at Blakehurst High). Although the first two programmes were very good, the example from Blakehurst High, for the Canon Canola 1614P with Printer (optional) is felt to be the simplest and most compact and is printed below. (They also sent a programme which deals with repetitions but this is not given.)

To use the programme, one person starts by entering a 4 digit number. The machine then separates the digits and disperses them to memories 5, 6, 7 and 8. The person trying to discover the number then enters a 4 digit number. The machine separates and disperses the digits to memories 9 to 12, counts the Bulls, counts the Hits, and then prints (or displays) your score. The scoring system is: 10 for each Bull, 1 for each Hit, so a score of 12 means that you have 1 Bull and 2 Hits (and so one digit completely wrong). A digit will not be counted as a Bull and a Hit in any one guess. Thus the aim of the game is to score 40. We hope that you will enjoy playing Mastermind as much as we have at our school.

Procedure:

- 1. With machine ON, mode LRN, printer OFF enter the programme either manually or by punch cards.
- 2. With mode OPE (a)
 - (a) Press START
 (b) Enter 4 digit number
 - (c) Press START
- With printer ON
- (a) Enter Guessed number
- (b) Press START (Your guess will be printed). After a few seconds the machine gives your score.
- (c) If SCORE is less than 40, exter another guess.

 (If SCORE = 40 the machine returns to the beginning and waits for a new secret number.)

Notes:

- 1. If your school has no print attachment then replace '\$\g'\$' in step 98 with SJ, and omit step 99. When the machine stops and displays your score, then press START and it will continue.
- 2. Instructions SUJ, SFJ, and SRJ cannot be entered manually: they must be entered by a punch-card. They are instructions "108", "109" and "110".

1	FJ	37	RM11	73	RM10	109	RM3
2	ter) theil try	38	RM7	74	RM8	110	SM4
3	ENT	39	SUJ	75	SUJ	111	→ · ·
4	SM3	40	CM2	76	CM3	112	SM3
5	SUJ	41	RM10	77	RM10	113	X
6	CM1	42	RM6	78	RM7	114	1
7	SM8	43	SUJ	79	SUJ	115	0
8	SUJ	44	CM2	80	CM3	116	Eventure Manage
9	CM1	45	RM9	81	RM10	117	M4
10	SM7	46	RM5	82	RM5	118	RM4
11	SUJ	47	SUJ	83	SUJ	119	SRJ
12	CM1	48	CM2	84	CM3		
13	SM6			85	RM9	120	SFJ
14	RM3	49	RM12	86	RM8	121	CM2
15	SM5	50	RM7	87	SUJ	122	ARGE 135
16	CI	51	SUJ	88	CM3	123	\checkmark
47	and the second distance of the second section	52	CM3	89	RM9	124	SC
17	FJ	53	RM12	90	RM7	125	LM
18	2	54	RM6	91	SUJ	126	3
19	CM1	55	SUJ	92	CM3	127	1
20	ENT	56	CM3	93	RM9	128	0
21	SM3	57	RM12	94	RM6	129	M1
22	SUJ	58	RM5	95	SUJ	130	FJ
23	CM1	59	SUJ	96	CM3	131	3
24	SM12	60	CM3	-	-	132	SRJ
25	SUJ	61	RM11	97	RM1	133	CEI
26	CM1	62	RM8	98	♦	134	SFJ
27	SM11	63	SUJ	99	FD		CM3
28	SUJ	64	CM3	100	4	135	
29	CM1	65	RM11	101	0	136	√ √
30	SM10	66	RM6	102	ves unique v	137	SC
31	RM3	67	SUJ	103	MJ	138	MJ
32	SM9	68	CM3	104	2	139	4
33	RM12	69	RM11	105	UJ	140	1
34	RM8	70	RM5	106	1	141	M1
35		71	SUJ		OF !	142	FJ
	SUJ	72	CM3	107	SFJ	143	4
36	CM2			108	CM1	144	SRJ

The strategy.

To our knowledge no mathematical analysis has yet been done to suggest the best strategy for Mastermind, so based on our experience of many games we would like to offer a strategy that we believe to be sound.

First guess:

Try any 4 digits.

Second guess:

Unless you had 4 Hits or better, try 4 different digits.

Third guess:

If you haven't had a total of 4 Hits (or better) then try the 2

remaining digits with 2 from previous guesses.

Fourth guess:

AM

LIVE

Based on the previous guesses determine the most likely result (that is the one that has most probability) and assume

it to be correct.

Remaining guesses: Here you have to play as it goes, but pursue your assumption until it is proved right or wrong. If you do this you will either

have finished or discovered a new possibility to follow.

CM3

RMA

Finally, might we suggest that in most cases take the combination of digits that has the most possibilities. In most cases you should finish in 6 or maybe 7 guesses.

The above strategy was also submitted by Mr T. Croucher. After playing the game for a while, some of our readers might like to try to suggest a better strategy.

> 88

Answer to Graeme Elsworthy's polynomial trick:

CM3

TMA

Write $f(x_0)$ in base x_0 notation. Thus $f(x_0) = a_0 + a_1 x_0 + ... + a_n x_0^n$ where a_n , a_{n-1} , ..., a_0 are the "digits" of $f(x_0)$ to base x_0 . The algorithm which allows you to do this gives unique values for a_0 , a_1 , ..., a_n and so defines a unique polynomial $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$. For example, if you are told that f(9) = 341 then you write 341 (base 10) = 418 (base 9) and so the polynomial is $f(x) = 4x^2 + x + 8.$