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COUNTING LARGE SETS

Everyone knows how to count the number of elements of a finite set. But what
are we actually doing when we count? For example we know that the set J =
{January, June, July} and W = {1,2,3} have the same number of elements, but
the sets M ={March,May}and W = {1,2,3} have different numbers of elements, Why?

To answer this question, write down the elements of J and then write down the
elements of W below them. The following diagram shows one way in which we
can join the elements of J to the elements of W by lines.
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In this case, each element of both sets has one line, and only one line, drawn to it.
However, if we try this for the sets M and W, we can easily see that it is
impossible:
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We will say that two sets are in one-to-one correspondence if we can draw such
lines satisfying the following condition:

Each element of either set is joined to one, and only one, element of the
other set.

Thus the sets J and W are in one-to-one correspondence but the sets M and W (or
the sets J and M) are not. You might now like to show that the set of days in a
week is in one-to-one correspondence with the set {1,2,3,4,5,6,7! and the set of
letters in our alphabet is in one-to-one correspondence with the set
{123:....26%.

We are now in a position to “count’’ finite sets. We will say that the cardinal of
a set is 1 if it is in one-to-one correspondence with the set {1}, the cardinal of a
set is 2 if it is in one-to-one correspondence with the set {1,2}, and so on. For
example, the cardinal of our set J is 3, the cardinal of our set M is 2 and the
cardinal of the set of all letters in our alphabet is 26.

In the case of finite sets, our word ‘‘cardinal” seems unnecessary since it just
means the number of elements in the set. However, we do get a bonus from the



word when we use it for infinite sets. An aid to thinking about infinite sets is a
story told by David Hilbert, a mathematician who lived in Germany at the
beginning of this century. There were once two hotels in which each room would
take only one person. The owners knew that their hotels were full when the set of
guests was in one-to-one correspondence with the set of rooms:

room 1 room 2 room3 ...... room “‘n"’
person in person in personin ...... person in
room 1/ room 2 room 3 room “n”

One day when both hotels were full, a traveller arrived at the first hotel (which
was called ““Hotel Finite”) and the owner regretfully had to send him away. So
the traveller went to “Hotel Infinite’” (the other hotel). When he asked for a
room, the owner replied that, although his hotel was full, he could still
accommodate the traveller because his hotel had an infinite number of rooms. He
simply transferred the occupant of room 1 to room 2, the one from room 2 to
room 3, and so on, and the new arrival was then able to have room 1. This
illustrates the remarkable fact that an infinite set can be in one-to-cne
correspondence with a subset, in the case of this story the one-to-one
correspondence being between the room out of which a guest was moved and the
room into which he was moved:

room 1 room 2 rorom3 ... room n

room 2 room 3 room4 ... room n+1. .,

In fact, last century, Dedekind noted that a set is infinite if and only if it is in
one-to-one correspondence with a subset (besides itself of course!).

We are now in a position to “‘count’ infinite sets — or rather to assign cardinals
to infinite sets. For example, what is the cardinal of the set N = 1,23, .05} 6F all
positive integers? Clearly it is not 1 since N and {1} are not in one-to-one
correspondence. Similarly, the cardinal of N is not 2, 3 etc. In fact if n is a
positive integer and the cardinal of N were n, then we would have a one-to-one
correspondence:

1 2 o n -

1 2 3 n - ntl

So N is infinite and we have to invent a new symbol Ro for the cardinal of any set
in one-to-one correspondence with N. (X is the first letter of the Hebrew alphab.t
and is called “aleph” — ¥ is called ““aleph-nought"’).

Now let us find the cardinals of some more infinite sets:

(1) The set {2,46,8,...} of all positive even integers. At first sight, you might
think that the cardinal of this set was smaller than No, but we can show that this



set is actually in one-to-one correspondence with N:
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Thus by. our rule the cardinal of this set is Xy. You might now like to take some
other infinite subset of N, such as the set of odd positive integers or the set of
perfect squares and show that the cardinal of these sets is again 8y (Galileo did
this for the set of perfect squares 300 years ago.)

(2) The set {0,1,2, ...} of all positive integers together with 0. As before, you
might think that the cardinal of this set was bigger than Ng but, using Hilbert's
infinite hotel trick, we can show that this set is in one-to-one correspondence with
N and so its cardinal is also 8.

0 1 2 & 2 n—1
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Similarly, you might like to show that the cardinal of the sets 1-1,0,1,2, ...}
{-2,-1,0,1, .. .1 etc, is Rg.

(3) The set J of all integers. We surely have a bigger cardinal now because, just
as there is no number bigger than all the positive integers, so there is no number
smaller than all the negative integers and so we have nowhere to start. But here we
can use a trick of re-arranging the integers by alternately writing down the
positive and negative numbers. The result looks like this:
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Once again, we have our familiar one-to-one correspondence between our set J
and N, and so the cardinal of J is §&.

(4) The set Q* of all positive rational numbers. Surely the cardinal of this set is
bigger than R as it is so huge! But this is not the case as is shown in problem 314
where a one-to-one correspondence between Q* and N is given. To do this, we
write the positive rationals down as follows /
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and “count” them diagonal by diagonal (following the arrows). The one-to-one
correspondence given in problem 314 is:

1/1 1/2 2/1 1/3 2/2 p/q

| | | | |

1 2 3 4 5 i Y2(p+q—1)(p+q—2)+p

Certainly some rational numbers occur more than once (such as 1/1=2/2 =3/3 =
. . .) but this can be overcome by leaving that number out after its first occurrence
and moving the remainder one place to the left each time we do this. Now a trick
similar to example 3 will show us that the cardinal of the set of all rational
numbers is also N .

By now we are ready to believe that the cardinal of any infinite set is Ro.
However in 1874, George Cantor — who was the first mathematician to use the
idea of cardinals — succeeded in proving that the cardinal of the set R of all real
numbers was bigger than X. {

This now raises a question which has puzzled mathematicians for years: are
there any sets whose cardinal is bigger than 8 but smaller than the cardinal of R?
The belief that there are no such sets is called the “continuum hypothesis’’ and,
for many years, no progress was made in proving it or disproving it. However, in
1963 P.J. Cohen showed in effect that it could neither be proved nor disproved
(in the same way as you can ‘‘prove’” that you cannot prove that there is only
one line passing through some point and parallel to some line). Cantor was able to
prove that there were cardinals bigger than the cardinal of R (in fact an infinite
number of them).

Questions:

(1) Find a subset of {1,2,3} which is in one-to-one correspondence with the set
tMarch,May }. Can you find a subset of {March,May} which is in one-to-one
correspondence with the set {1,2,3}?

(2) Write down any two finite sets. Show that the smaller of the two sets is in
one-to-one correspondence with a subset of the larger set. Show that the
larger of the two sets is not in one-to-one correspondence with a subset of the
smaller set.

(3) Use question 2 to invent a way of deciding whether one cardinal is bigger than
another.

(4) By experimenting with ordered pairs (a,b) of elements acA and beB for finite
sets A,B, invent a way of multiplying two cardinals. '



