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DRUNKEN ELECTRONS WHICH GAMBLE, FACE RUIN

What is similar between a drunk staggering along a narrow alley and an electron
moving along a wire under a potential difference? Well, to a reasonable degree of
accuracy the two situations can be modelled by the same mathematical setup --
called a ““random walk"’.

We will restrict our attention to a walk in one dimension with the step-size
being unity, we presume there is a probability p of moving in one direction along
the axis (alley or wire) and consequently a probability q = 1—p of moving in the
other direction. To get a very simple model, we will assume each movement
occurs after a time interval of unity also. Now all this may seem fairly restrictive,
but the model is still of wide applicability; for example, we have also modelled a
gambling game. Let us continue the discussion in terms of a series of gambling
games, and let us investigate the probability of the gambler’s ruin.

The total capital of a units is initially split between the gambler (let’s call him
Zed) and the bank of the house, so that Zed may have z units and the bank a—z
units of cash. Zed plays the house a series of games, until the bank loses all its
cash, or Zed loses all his (the gambler’s ruin). Our unit of “time’’ is each game. In
Fig. 1, the horizontal axis is “time’ (the number of games) and the vertical axis
Zed’s cash (starting with say z = 12) for the case a = 20, and p = 0.4 (q = 0.8).

We are interested in the probability that Zed will ultimately be ruined, when he
has cash z to start with. Let this probability be represented by Q(z), and suppose
Zed's cash increases to z+ 1 with probability p and decreases to z—1 with
probability g in one game. Since Zed will either win or lose the next game,

Q(z) = pQ(z + 1) + qQ(z—1) (i)

This is a second-order difference equation for Q(z), and can be solved by
assuming

Q(z) = m? for some constant m (ii)

Substituting (ii) into (i) and dividing by m?"

m = pm? + q whence
m = [1++/(1-4pq)]1/(2p) or m = [1-+/(1-4pq)]/(2p)



Gambler's Ruin a = 20
z = 12
p= 04

Time to ruin = 52 games
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Either root satisfies, and so will the most general combination
Q(z) = m* = Am * + Bm,*
where m, = (1 ++/ [1—4p(1—p)]1)/(2p) (remembering that g = 1-p)

= [1++/(2p—1)%1/(2p) = 1
and similarly, for the negative square root, m, = q/p, which we will write as r.

So Q(z) = A + Br? (iii)

But we know that, if z = 0, the probability of ultimate ruin is 1 (certainty),
while of z = a, the probability of ultimate ruin is 0. i.e.

QO)=1=A+8B (iv)

Q(a) =0=A+ Br® (v)
and, solving for A and B yields

Q(z) = (r*—r*)/{r*—=1) (vi)

Check that Q(0) = 1 and Q(a) = 0.

In the case illustrated in Fig. 1, p=0.4,q9 = 06sor=1band, forz=12,a=
20 and Q(12) = 0.99. Not very hopeful.

Suppose we double the stakes in the game. We don’t have to go through all the
working again, since doubling the stakes is equivalent to halving the initial cash,
s0, in this new game (r = 1.5 still) Q(12) = (r'0—r8)/(r'9-1) = 0.81.

The improved situation is not surprising because the larger stakes make the
process more erratic — imagine magnifying the walk in Fig. 1 by a factor of two,
but the boundaries remain unchanged (i.e. the steps are magnified); because q >
p, the long range trend is downwards, but with a more erratic process, the chance
of reaching a before the downward drift is increased.



What happens to Q(z) if the house is infinitely rich (poor Zed!). We can let a -
% in (vi) and so

Q(z)~>1 ifg>p(r>1)
+ i ifg< pir<1)

Zed’'s hopes may be high but unless P > g he will ultimately be ruined, anc
even if p > q his prospects are not wonderful. We can be pretty sure any casin
which has been operating for any reasonable length of time does not have game
in which p > g (although p will not be much smaller than 0.5, or people woul
give up playing). So, if the stakes are relatively high compared with the cas
needed, Zed might be prepared to take the risk. Over many games the average gai
can be defined as the sum of two terms — the amount to be won multiplied b
the probability of winning, less the amount to be lost by the probability of losing
Technically, we define

Expected gain = Gain x Probability of winning
— Loss x Probability of Losing

So for Zed's expected gain we have

Expected gain = E(G) (giving it a symbol)
= (a—z) P(z) — zQ(z)
= (a—z)(1-Q(z))—zQ(z)
= (a—z)—aQ(z)
=a(1-Q(z))-z
=aP(z)—z

By using P(z) = 1-Q(2), the probability of ultimately winning, we ar
presuming Zed is going to play to the bitter (or sweet) finish. If he adopts a polic'
of stopping play before the end under certain eventualities, the probabilities ar
changed, of course. The importance of expected gain is that the gain need not b.
purely financial, but can involve all that the “player’’ has to gain. This is why lif
assurance, for example, is an acceptable (if usually unprofitable) risk, because th
gains in peace of mind, etc, are of value, and the losses, if they chance to occur
are so severe.

If Zed plays out the game series, how many games are to be expected — we tall
of the expected duration of the series. Let the expected duration (when Zed ha
capital z) be D(z). If Zed wins the first game, he has now cashiz + 1, and th
expected duration is 1+ D(z+1), the 1 coming from the one game already piayed
So, as with equation (i) at the beginning, it follows

D(z) =p D(z+ 1) + q D(z—1) + 1 (vii

Notice that this is very similar to equation (i), and can be solved in a very simila
manner, but the boundary conditions are different, since

D(0)=0
D(a)=0 (viii
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Let’s try to fix up the 1 first. Because (p+qg)z = z, we might try as a solution to
eliminate the 1, the following:

D*{(z) = kz (ix)
which, when substituted, gives

kz = pk(z+1) + gk{z—1) + 1 = (p+tg)kz + pk—qgk + 1 and so

(g—p)k = 1, or k = 1/{(g- p). Thus

D*(z) = z/(q—p) (x)

If we set D{z) = D*(z) + D,(z), substituting in (vii) leaves us to find D (z)

satisfying

D,(z) =pD,(z+ 1) + q D,(z—1) exactly as in (i).
As we found there,

D.,{z) = A+ Br* wherer=aq/p
and D(z) = A+ Br* + z/(g—p)

Applying conditions (viii) shows, by solving two equations for A and B,

~z_ _ _ allse) (xi)
el q—p (a—pT—n} :

As an example, if Zed has $90 and the total cash is $100, with g = 0.6, (p =
0.4), with stake $1, then by (vi), Q(90) = 0.983 and by (xi), D{90) = 441.3.
If Zed plays out the game till the bitter/sweet end his expected gain, from the
definition, is
E(G)=P(z) . (a—2z) — Q(z) .z
=0.017 x $10 — 0.983 x $90
= —$88.30

| hope Zed is gambling just for the thrill he gets out of it, for he is not going to
get much financially out of it, almost surely. But, there is always that way-out
chance .. . .|

Returning to an electron. We might model the movement of an electron along a
wire by having it “‘jump’® from one atom to the next every time unit (possibly of
the order of 10'® sec.!). If there is no applied voltage, under thermal agitation,
we might assume the electron jumps either to the right or to the left with equal
probability, whereas, if the right-hand end of the wire is maintained at positive
voltage, the electron might be assumed to jump to the right with a probability g
and to the left with probability p < g. The model is simple, but instructive, and
all the work done on the gambler’s ruin is immediately applicable.

What we have shown is that we can build a reasonably simple mathematical
model of a variety of different processes, and, solving the model equation involves



the high school mathematics of solving a quadratic equation; while satisfying the
initial conditions determines any constants in the model by solving two linear
equations.

EXTENSIONS

1. If p =q =%, the solutions (vi) and (xi) break down. Show by substitution
that for a ““fair" game (define by p=q =%).
Q(z) = 1—z/a
and
D(z) = z(a—z) |
satisfy the equations (i) and (vii) | as well as the boundary conditions ((iv)
and (v), and (viii)).
2.  Calculators might help you to check that when p=0.45,a=10,z =9, then
Q(9) =0.21, E(G) = -1.1, and D(9) = 11. :
3. What happens in a ““fair" game against an infinitely rich house bank?

4. If the drunk mentioned in the opening paragraph still has 100 feet to get
home, and every 10 sec. he takes a pace of size 2 feet but with a chance of
one in five of going in the wrong direction, how long might he expect to take
to get home? (Regard the road away from home as being infinitely long, and
note that, as a - o, a/42 = Q).

Peter J. Hannan

[Mr Hannan is a tutor at the University of NSW in Statistics. This article is the

talk he gave at this year’s “4 unit day” organised by the Mathematics Association
of NSW.]
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Large Number Plates

“My", said Professor A to Professor B as a large limousine sailed by, ““that car
has a large registration number.” Sure enough, the vanishing number plate read

EXP 999,

"1 wonder if there are any larger numbers around’’ mused Professor B.
After some thought, Professor B returned triumphant with the ultimate in large
registration numbers:

TAN 90.
From “School Mathematics Journal”



