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HOW TO CATCH REAL NUMBERS

What should we understand by a real number? Kronecker, a German
Mathematician who flourished at the end of the last century, is supposed to have
said: “God made the natural numbers: all else is the work of man’’. The integers
and the rational numbers are comfortingly concrete and they would seem to be
more than adequate for everyday use. This cosy view of the world was dented by
Pythagorus and his school {5th century B.C.} when they discovered that +/2 is
irrational (Exercise: Why?) Yet /2 should be just as much of a number as 1. If |
take the discrete, or engineering point of view, then +/2 is what my electronic
calculator says it is, viz 1.414213562. If | take the continuous point of view then
/2 fits in some mysterious way into the line of rational numbers. Qur satisfaction
with this soluticn is shattered by Zeno (c. 450 B.C.). On the discrete view, motion
is impossible because if you are at a particular point you cannot be moving. On
the continuous view, motion is still impossible because you must always arrive at
the half-way point before you reach your goal. The Greeks found more and more
irrational numbers such as /3, /5, V7, ... +/17 (Theodorus, ¢. 450 B.C.), but
they did not quite succeed in resolving what they were. They thought of numbers
as lengths, products of 2 numbers as areas and products of 3 numbers as volumes.
This made it almost impossible to do arithmetic, for example how many carpet
tiles measuring 0.1 x 0.1 units are needed for a room measuring +/2 x /37
Consequently, Greek science was largely qualitative. Their attitudes persist in our
language (squares, cubes). Apparently, one poor fellow was sentenced to death
under the Spanish inquisition for attempting to sclve the quartic equation because
it was a sin against God to contemplate x4.

Stevin (1585) and Napier at about the same time hit on the idea of representing
numbers by decimals. Given a real number, we set a;, = [x], the integer part of x,

- : o = 3 2. T TR
X =ag + x1/10, 8, = [x1],x—ao+a1/10+)\2/10 ;ete. That is x = a .8, a, .. .

where the digits gy, &, - . . ane 0,1,2,...o0r 9.1 wish to regard a real number as
anything which can be written asa, +a,/10+a,/10? +...=a .a, a, ... where
the digits a,, a,,... are as before. We can make various observations about x

from the shape of its decimal expansion.



First, the decimal may terminate, e.g. 0.1375 = 1375/10000 = 11/80 = 11/2% x5.
The numbers with finite decimal expansion are just the fractions a/2m5n Next,
the decimal may become periodic, e.g.

0345 = 0.3454545 . .
= 3/10 + 45/1000 + 45/100000 +
3 45 1

T 1000 T=77706
=3/10 + 45/990 = 19/55.

In fact, the numbers whose decimal expansions are finjte Or eventually periodic
are just the rationals. For consider x = m/n = ag + x,/10; X, = 10(m—aon)/n =
m. /n = a, +x,/10; X 1()(rn1 —a,n)/n = m,/n= a, +x,/10; . ., Since m,, m,,
- - are integers (in fact multiples of 10) with 0< m. < 10n, we must find that m_
= m,. for some indices St = 1 and then x = -2, .a VR )

L.e. the decimal expansion of x js periodic. We have further that the maximum
period length for m/n is N—1; this is attained for 1/7, 1/97 and others. By the
way, 1/7 = 0.142857, 9/7 = 0.285714, 3/7 = 0.428571, 4/7 = 0.571428 5/7 -
0.714285 6/7 = 0.857142. Why?

A number whose decimal does not terminate or repeat must be irrational. For
example, the 'f@llowing are irrational:

0.1010010001. . | . 0.1234567891011. . 0.23571113171923.

Decimals have the advantage of ease of Manipulation, i.e. there is a simple
procedure for addition and multiplication. Their great disadvantage is that the

the base 10. As 3 means of approximating a real number, the decimal expansion is
unsatisfactory because it yields only fractions with denominators 2™ 5n_ (why?)

As an historical example of this approximation problem, Huyghens {1660) set
about constructing a model of the solar system by using toothed wheels. He had
to determine what numbers of teeth for the wheels would give a ratio for 2
interconnected wheels as close as possible to the ratio o of the periods of
revolution of the corresponding planets, At the same time, the number of teeth
could not, for technical reasons, be too high. So we want to find a rational
approximation P/q to a, with P.q not too large, which approximates a as closely



as possible. We call p/q a best approximation to « if |sa—r| > |qa—p| for every
rational r/s # p/q with 0 < s < q.

If « and Q are any real numbers with Q > 0§, we can find integers p and g such
that |[ga—p | < 1/Q and 1 < q < Q. For we can suppose Q is an integer. Consider
the distribution of the Q+1 points 1 and {ja—[ja]: 0 < j < Q} among the Q
intervals {x: k/Q < x < (k+1)/Q ! where 0 < k < Q. At least one of the intervals
must contain two of the points, so we can find integers r, r 5,, S, such that
Wi a—g, Ir o—2, 31 < Q.

As a first best approximation to @ we choose p,/q, = p,/1 where p_ is the
closest integer to a. Ifa = po/qo, the process stops. Otherwise, we can find p/q so
that |ga—pl < Igya—p,l. Let g, be the least g with this property and p, the
corresponding p. If a = p1/q1, the process stops. If not, we can continue the
process to determine all the best approximations Po/Ag. Py /A, Po/A,, .. . tOain
order of ascending q, . If a = p/q is rational, the process clearly stops at some
point p, /q, = p/qsince p/q is a best approximation. If a is irrational, the process
continues indefinitely. Moreover, |qa—p| > lg,a—p,l for 0 < g < g SO
Up4qla,a—P, I < 1 i la—p /a 1< 1/q. q_,, s0p /9 ~assn-> e

Let us find the best approximations to 157/68. (This procedure was used by
the Hindus about 470 A.D.)

157 =2 x 68+ 21, 21 =157 — 2 x 68:
B~ % G = Vil 5201 9050, 7 21/68
68=3x21+5,5=7x68— 3x 157:
Ry = 7,9, =3, p.la, = 7/3,q,a—p, = -5/68
21=4x5+1,1=13x 157 — 30 x 68:
p, =30, q, = 13, p,/q, = 30/13, g,a—p, = 1/68
5=b6x1+0,0=157 x 68 — 68 x 167:
p; =157, a, = 68, p;/q, = 157/68, qya—p,; = 0.
This is just the continued fraction algorithm:
157 21 1 1
68 68 5 1
3+ — 3+ —-
21 1
4+ —
<

2

n+i’

and the best approximations are given by deleting the remainders at each step. To

save space (and typists) we will write this as 2 +-%—J: 4_} —% In general, any rational



. , ; D 1 1 1
p/q can be expanded as a continued fraction 2 =4 + . _1 ... — and the best
q‘ 0 31 1 az"" aN
p . - 1_i ')n =Ty + 1 1 s . b e ,-l _!_ 1
approximations ~n . d1+ he 5; are given by p, = a,, q, = P P I !

‘}12'1{[3“”: n+1; n[n1’q1+1— n+lqn qn1
The continued fraction provides the best approximations for any real number
a. We proceed as follows:

a=a, %“1,/'x1,ao=={a];x1 = g, +1/x2,a1 *[x1];x

e Foar B = pmities
5 18, * 1/x3, ay = [x,]; et
1 1 1 1 1 1 "
Thuse Fag # —— —— gpas— — = goy o 1 poo example,
0 g+ agt angt X, . a 62+

n=3141602654,, =3+, L 1 1 1 1 1 1 1 11 11 1
74 1b+ 14 282+ 1+ 1+ 1+ 24 1+ 3+ 1+ 14+ 3+ 14
n=0 1 2 3 4 5 6 7 8 8
ge =3 7 16 1 202 1 1 1 2 1
Pn=3 22 333 355 103993 104348 208341 312689 833719 1146408
=1 7 106 113 32996 33109 66105 99214 264533 363747

Observe that n — 365/113| = |r - pgfqai < ’!/q&q4 = 1/113 x 328906 < fix’"“"’
Apparently, there is ne pattern to the a_, but Brouncker {165 9} observed that

4 a i ?-' '5 45’ o i ]
e LB R Consider another example:
al=./2=1+4 W, X, = WV2-1)=/2+1=2+ 1/x2; = 1/(\/2—1) = ot 7
foey 1 ‘a 1 1 1 1 , 1 . b b K
Thus\/2=1+ - — __ __ |tcanbe proved that any irrational number of
2+ 24 2% 7%

the form (a + b/ d}/c with a, b, ¢, d integers has a periodic continued fraction.
1

: : B B0l
The converse is also true. For example, consider a =3+.~ —___ __
2+ 1+ 2+ 1+

1

& a—2 2 _
o gy s BE s sl B e o Sl + L S0
Then a- 2+ it 9 13 24 1+a—13 2a—3" lL.e. 2a 10aq + 11 -}, s0

a = {56 +./3}/2



Suppose now that we wish to find a positive integer n such that n+1 and %ant1 are

both perfect squares. We require n+1 = x?, %n+1 = y?, so x?—2y?2 = —1. This says

ix—yv 21 = 1/(x+y/ 2} so we might expect x/y to be a best approximation to /2.
Using the continued fraction expansion for /2, we get

ni = 0 1 2 3 4 5 6
a, = 1 2 2 2 2 2
p, = ( 3 7 17 41 99 239
a . = 1 2 5 12 29 70 169
p,2—2q,?| = —1 1 ~1 1 - 1 —1
p, 21! = 0 . 48 . 1680 . 57121

and infinitely many more.

The equation x?—dy? = +1 was (wrongly) called Pell’s equation by Euler after
Brouncker and Wallis had given a partial solution (Euler thought Pell had done it).
It can always be solved using best approximation in this way. It was known much
earlier to the Hindus. Brahmagupta (650 A.D ] wrote: “A person who can within
a year solve the equation x2—92y? = 1 is a mathematician”. The smallest solution
is x= 11561, y = 120.

Even earlier, Archimedes (400 B.C.) perpetrated his famous cattle problem:

Compute O friend, the host of the oxen of the sun, giving thy mind thereto,
if thou hast a share of wisdom. Compute the number which once grazed upon
the plains of the Sicilian Isle Trinacia and which were divided according to
color into four herds, one milk white, one black, one yellow and one dappled.
The number of bulls formed the majority of the animals in each herd and the
relations between them were as follows: [We write W, B, Y, D for the
respective numbers of bulls and w, b, y, d for the cows|] W = 5B/6 + D, B =
9Y/20 + D, Y = 13W/42 + D, w = 7(B+b)/12, b = 9(Y+y)/20, y = 11(D+d)/30,
d = 13(W+w)/42.

If thou canst give, O friend, the number of bulls and cows in each herd, thou
art not unknowing nor unskilled in numbers, but still not yet to be counted
among the wise. Consider however, the following additional relations between
the bulls of the sun. W+B is a square, and Y+D is a triangular number. When
thou hast then computed the totals of the herds, O friend, go forth as
conqueror, and rest assured cthat thou art proved most skilled in the science of

numbers.
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This is equivalent to solving x2—4729494y2 = 1: we refer the reader to Chapter
22 of Albert H. Beiler's excellent paperback ‘‘Recreations in the theory of
numbers. The Queen of Mathematics entertains’ printed by Dover books. That
this is an interesting problem may be gathered from the fact that it was
completely solved by computer only a few years ago, with the individual numbers
being about a third of a mile long!

John Loxton
Dr Loxton is a lecturer at the Unj versity of N.S.W. in Pure Mathematics.
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Crossnumber
(adapted from Mathematical Digest, New Zealand)

A, B, C, D, E are positive whole numbers whose values may be deduced.
The first digit of each number in the crossnumber is not 0.

a b c
d e f
g |bh [ j
k |
m n
0
Across wan
(a) (2A +B){(A-B) (b) A multiple of C
(e) 10(A +B) + 1 (¢} 2
{g) E {d) 100 +E
(i) BC (f)  Same as (I) across
(k} A+B+C+D th)  10(B + D)2 + 1
(1) Same as (f) down {(j) 274D
(m) (C+D)E {} 5CD
(o) 11(A+B+C+D+E) (n) 2E

If you find it difficult, see the hint on page 22,
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