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MULTIGRADES

Everyone knows how to find examples of sets of three numbers which add up
to the same number, such as

1+6+8 = 2+3+ 10
or sets of three numbers whose squares add up to the same number, such as

47?2392 = 32 487 4 407
However, a more interesting example is two sets of three numbers which do both
of these at the same time:
1+6+8 =2+4+9
12+ 62 +82 = 22 142 1 g2
A more interesting example still is the following two sets of four numbers:

T+5+8+12 = 2+3+10+ 11
12 +5% +82 4122 = 22 132 4 102 4 192
19 +53+8%+123 = 23 4334903 4 113
or, more briefly,
1" +5" +8" + 120 = 9n 4 3n 4 10"+ 11" forn=123.
This expression is called a multigrade of order 3, and the expression
T"+6" +8" = 2" 440 4+ gn forn=1,2
is called a multigrade of order 2. Similarly, you can think of multigrades of order
4, 5,6, ..., where the order of the multigrade is the largest value of n for which
the equality holds. There are many methods of constructing multigrades of
various orders and we shall look at a few in the course of this article.

One property of multigrades that is particularly interesting is that you can add
the same integer to each term and still preserve the relationship. For example, we
have:- ‘

" +6" +8" = 2n 4 4n 4 gn forn=1,2



By adding 6 to each term, we have:
MHI2" 414" = 8"+ 10" + 15" forn=172.

The proof of this is easy as we can show for the case of a third order
multigrade with 4 terms, Say we have:

A" +B"+C"+D" = EP 4+ En 4 0 +H" forn=1,223.
If we add k to each term, we have
(A+k) + (B+k) + (C+k) + (D+k) = (E+k) + (F+k) + (G+k) + (H+k).
Also
(A+k)? + (B+k)2 + (C+k)? + (D+k)2
= A% + B2 + C2 + D2 + 2k(A+B+C+D) + 4K2
=E2+F2+G2+H2+ 2k(E+F+G+H) + 4K2

= (E+k)? + (F+k)2 + (G+k)? + (H+k)?,
and

(A+K)? + (B+k)® + (C+k)3 + (D+k)3
=A%+ B> +C%+ D3 + 3k(A2+B2+C24D2) + 3k?(A+B+C+D) + 4k3

=E° +F3 +G3 + H3 + 3k(E2+F2+G2+H2) + 3k2 (E+F+G+H) + 4k3
= (E+k)3 + (F+k)® + (G+k)3 + (H+k)3.

So much for that. Now let us have a look at a simple method of constructing a
multigrade.

Start with a simple (first order) multigrade, such as:
1+4 = 2+3
Add 4 to each term
5+8 =6+ 7.
By “switching sides’* and combining, we obtain a longer multigrade.
1T+4+6+7 = 2+3+5+8.
But, also
12442 +62+72 = 22 4 32 4 52 4 g2

and so this is actually a second order multigrade.

The proof of this process is given later. When we added 4 to each term, we got
a second order multigrade with all terms different and with 4 terms on both sides.
By picking the value of k carefully, we can build up high order multigrades with



reduced numbers of terms on each side. For example, to produce a third order
multigrade, we start as before with a simple equality:

| 1+4 = 2+3
putk =3
then 4+7 = 5+6,
© Hence ‘1"+4‘+5"+6"=2"+3"+;ﬁ*+7" forn=1,2
s he T AN EBN T = 2 43N 70 forme 12
“putk=5

6" +10" + 11" = 77 480 4 190 forn=1,2
Switching and combining
1" +5n+gh 1 7h L gn g 190 = on +3"+gh 4 70 4 10n 4 g
' forn=1,2,3
ie. 1" +5" +8" 4+ 120 = 2%4 3% £ 107 + 1" forn=1,2,3
We can continue in this way for as long as we wish to produce multigrades of
any order we desire.

Let us now prove the “switching” procedure for second order multigrades.

(Higher order “switching’’ can be similarly proved.) If we start with the simpie
equality

Xty = (x—z) + (y+z)
Adding k,
Octk) + (y+k) = (x—z+k) + (y+z+k)
switching and combining
Xty + (x=2+k) + (y+z+k) = (x+k) + (y+k) + (x—2) + (y+z)

now take each side separately and sum the squares of the terms.
X2 +y? + (x—z+k)2 + (y+z+k)2 = 2(x*+y2+22 +1& —xz4xk+yz+yk)
= (xtk)? + (y+k)2 + (x—2)2 + (y+2)2.

This proves that the switching procedure yields a valid second order multigrade
for all values of x,y,z and k.

Using properties of polynomials, it is possible to show that a multigrade of
order n must have more than n terms on each side. This is obvious when n = 1,
and you have been asked to prove it when n = 2 in the first problem below. This
result led two mathematicians, Prouhet and Tarry, to propose the problem of

generating multigrades of order n, with n+1 terms on each side of the equality. We
have derived one solution above to this problem for order 3 and some other



solutions‘for this order are given by the identity:
X"+ (y=2)" + (3y+22—-2x)" + (2y+3z—x)"
= (2y—x)™ + (x—2)" + (y+22)" + (3y+3z—-2x)" forn=1,2,3
where x,y and z are positive integers with z < x < Y.
J.A.H. Hunter has derived a general identity for the third order problem,

where the left hand terms with n = 1 form an arithmetic progression with
common difference x2+y?; '

0" + (x?+y2)" + (2x2+2y2)" + (3x2+3y )"
= (2x%=3xy+y?)" + (3yZ—xy)" + (3xZ4+xy)" + (x2+3xy+2y 2) "
forn=1,2,3
where x,y are integers with y < x < 3z.
As an example, with x = 3 and y = 2, we have
0" +13"+26"+39" = 4"+6"+33"+35" forn = 1,23

We then add any constant to get rid of Q" (say 1):
"+ 14"+ 27" +40" = 5" + 7" + 34" + 36" forn = 1.2.3

D.C. Cross has now derived a semi-general identity for the fifth order
multigrades, and one of his solutions is

" +9"+ 18" + 38" +47" + 55" = 3n 4 g0 +22"+ 34" + 51" + 53"
forn=1,2,3,4,5.
Problems

(1) M x"+y"=a"+b" forn= 1,2, show that either x =a, y = b; or x = b, y = a.
Thus a multigrade of order 2 must have at least 3 terms on each side.

(2) Use the switching procedure to get a general identity for a second order
multigrade with three terms on each side.

(3) See if you can find some 3rd (or &th} order multigrades, with 4 (or 5) terms
on each side, which are not already given above.

(4) See if you can find another 5th order multigrade.with 6 terms on each side.
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