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BASIC AREAS AND VOLUMES

Gavin Brown™®

1. Why?

Here is a very pretty argument for finding the area of a circle:
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- Figure 1

The idea is to chop a circle of radius R into a large even number of congruent
segments. Then we reassemble the segments to look like a rectangle. If we take
enough segments then the new shape will get cioser to a rectangle whose height is
approximately R and whose length is half the circumference. Since the area of a
rectangle is the height times the length we come up with R times # R, in other
words 7R2,

That argument is very enjoyable and quite plausible but it's not really very
sound as it stands. Because it is visually compelling this is an excellent heurism for
use in early grades but it is not often made precise. It is, of course, possible to
tidy it up so that it becomes a proof.

* Professor Brown is the Head of the Department of Pure Mathematics at the
University of N.S.W.



Now here is a very nasty argument for finding the area of a circle: (Don't let it
put you off the rest of this article, my intention is to show a much nicer way
later!)

f(x) = VRZ—x2

The area of the circle is
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Let x = R sin ¢, so that the integral becomes
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= gR2,

| don’t like this argument at all! It is unnecessarily sophisticated in many ways
and uses several technical results.

The trouble is that many calculus textbooks use this argument or something
like it to find the area of a circle — or worse still they spend ages developing a
theory of integration but simply assume that everybody knows the area of a
circle. Of course everybody does — but usually they have only met a clever
plausibility argument like the first one | gave. That's the reason for this article. |
want to make sure there is something between the two extremes and show the
simplest ways | know to derive basic areas and volumes.

2. What we use

For a start we shall assume that the circumference of a circle of radius R is
2nR. This isnt really much of an assumption because it is virtually the definition
of 7! (To be accurate we would define 27 as the circumference of a circle of



radius one unit and prove that, in general, the circumference of a circle is
proportional to the radius.)

Next we suppose that we know how to differentiate functions like x3. That
certainly isn"t much of a demand!

Finally we assume that a function whose derivative is everywhere zero must be
constant, When it comes to applying mathematics, this result can safely be
assumed, | believe. The point is that it is rather less of an assumption than the
other assumptions usually involved in accepting that mathematical models fit
reality! In particular we must accept this result if we want to apply calculus to
dynamics because in that context jt translates into the statement that a particle
whose instantaneous velocity is always zero remains stationary! In other words we
intend to assume that a particle which is "“at rest” does not move!
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3. Circles within circles

Figure 2

Think of a disc of radius R being decomposed as a collection of concentric
rings. Let A(x) denote the area of a circle of radius x and suppose Ax > 0. Then
A(x + Ax) — A(x) is the area of the ring which has inner radius x and outer radius
X+ Ax. The area of this ring lies between 27 xAx and 2m(x + Ax)Ax. (Unlike the
first argument in section 1 this does not involve any approximation and there is
no need to assume that Ax is small. We wil] return to this point later.) Now we
have

Alx + Ax) — A(x)
AX

21X < < 2n(x + Ax).



Let Ax - 0 and note that both “ends’’ of the inequality tend to 27 x. It follows
that

I Alx +Ax) — A(x) _
im =
Ax—=0 AX
Ax>0
If we feel that way inclined, we can run through the corresponding argument with
Ax < 0. However that’s not really needed, because A(x) is certainly going to be a
smooth function of x, so we now know that

dA(x) = 27X,
dx

2m X

Of course the function A(x) = 7x? satisfies this equation, therefore the most
general possible solution is

Alx) = mx? +C,
where C is some constant. (That's where we use our assumption about functions
with vanishing derivatives.)

As the radius of a circle approaches zero then so does the area of that circle. It
follows that C = 0 and that

A(R) = #R2.

We should return to discuss the inequalities concerning the area of the ring. The
quick way to convince yourself of this is to imagine making a Swiss roll! Imagine
cutting the ring and unrolling it to form a rubber sheet of thickness Ax. However
this is only a plausible argument because we are stretching the ring in the process.
To find a precise argument we can check that the area of the ring must exceed Ax
x the perimeter of any polygon inscribed in the circle of radius x, and that the
area is less than Ax x the perimeter of any polygon circumscribing the circle of
radius x + Ax. ‘

| have been rather fussy about writing down these arguments because | wanted
to emphasize that every step can be made accurate and can be reduced to
primitive assumptions. After one gets the hang of this kind of argument one can
scribble down a rough sketch of the idea along the following lines:

“A circle is made up of concentric rings of area approximately 27 x dx. Hence
the area is '

R
. f 2rxdx = wR2.,



Of course the first sentence of that sketch is inaccurate (indeed it is technically
meaningless) but even pure mathematicians write that sort of thing consciously all
the time (at least this pure mathematician doesl!). In my own research work | find
it very useful to rough out proofs without bothering to get the details correct.

Then if it seems to be leading somewhere | come back and check the details to
make sure the argument stands up. Sometimes it does.

4. Slicing spheres
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Figure 3‘

It's now pretty easy to find the volume of a sphere by slicing with horizontal
cuts. In fact the volume lying between the depths x and x + Ax must lie between
the volume of a circular cylinder of radius VR2—(R—x)2 and height Ax and that
of a circular cylinder of radius vV R2—{R—x—Ax)Z and height Ax. It is no great
strain to prove that the volume of a cylinder is the area of the base times the
height (we can approximate the volume by using lots of parallelepipeds of the
same height but small base areas) SO we come up with another useful inequality,

m(R? — (R—x)2) Ax < H{x + Ax) — H(x) < 1r(R2-(R—~x—Ax)2)Ax,

where H(x) denotes the volume of the “hemispherical’’ cup of depth x cut from a
sphere of radius R, and Ax is positive.
Now we find that

i H{x + Ax) — H{x) _
im =
Ax—0 AX

m{2xR — x?).



This means we obtain the equation

7 = 2(2xR — x?),

and deduce that
H(x) = m{Rx? — x3/3).

In particular the volume of the sphere is 2H(R) which equals 47 R3/3.

5. Concentric shells

To find the surface area of a sphere we use the same diagram as in section 3 but
now it represents a sphere decomposed into concentric shelis. Let V{x) denote the
volume of a sphere of radius x (we already know that V(x) = 4nx3/3) and let S(x)
denote the surface area of a sphere of radius x. The shell with inner radius x and
outer radius x + Ax has a volume which lies between S{x)Ax and S{x + Ax)Ax.
Thus we find that,

Vix +Ax) —
AX

Six) < Vix) < S{x + Ax).

However S{x) is ‘certainly a smooth function of x so we know that S(x + Ax)
tends to S(x) as Ax tends to zero. Accordingly the inequality vields the following
equation, when we let Ax > O,

We already know that V(x) = 4nx3/3. It follows that S{x) = 47x2, and the surface
area of a sphere of radius R is 4nR?.

6. Chopping cones

We can find the volume of a right circular cone with base radius R and height H
by the slicing process used in section 4. (This can also be done by proving that the
volume of a pyramid is 1/3 base x height and approximating by slanted pyramids.
That seems a bit harder though.)
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Using similar triangles we see that the cross-sectional radius at depth x is Rx/H.
Accordingly we see that

TR2x?Ax/H? < C(x + Ax) — Clx) < 7RZ(x + Ax)2Ax/H2,
where C(x) is the volume to depth x.

It follows that
vR2x? = 2 §C
dx ’

and hence that

C(x) = nR?x3/3H2.

The volume of the cone is therefore C(H) = aR2H/3,
In order to write down a neat formula for the surface area of a right circular
cone it is convenient to introduce the “‘slant height” L. (Of course L =

V' R2 + H2_ See figure 5 above.)

The surface area of the curved surface is nRL. My favourite way of seeing this
involves cutting down one “edge’ and rolling the surface out to form a sector of a
circle of radius L.
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The area of this sector bears the same proportion to the area of the circle of
radius L as does the arc of the sector to the circumference of that circle. Hence
the required conical surface area, K, must satisfy

K/m L2

2nR/27 L.

In other words,

I

K = #RL.

7. Cylindrical sleeves and skull caps::

One of the prettiest results about surface areas is as follows:
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If a sphere is cut by two parallel planes then the surface area of the enclosed
portion is the same as the surface area of the enclosed portion of the
circumscribing cylinder whose base is paraliel to the planes (The area obtamed by
rotating AB about the central vertical axis is the same as that obtained by rotating
CD about that axis.)

Any calculus proof of this | have seen makes very heavy weather of it indeed.
Here is my version which avoids any nasty lntegrals

The main step is to find the surface area of the cap of depth X.

Figure 8

The surface area of this cap bears the same proportion to the surtace area of the
sphere as does the volume of the solid “sector’” it subtends to the volume of the
sphere. That “‘sector” is made up of the solid cap together with a right circular -
cone of height R—x and base radius +/R2—{R—x)2. Using the results of sections 4
and 6, we find that the solid sector has volume

7(Rx? — x3/3) +%W(R2 — (R—x)2}{R—x)
which simplifies to

gWXRZ.
3

Hence the surface area of our cap must be

27xR?%/3

4nR? = 27xR,
4R373 1r X



Now look back at Figure 7. Suppose that the one plane is at depth x and that
the other plane is at depth y. The surface area of the part of the sphere between
these planes is the difference between the surface area of the corresponding caps
and hence is

2un(y—x}R.

The surface area of the relevant part of the circumscribing cylinder is that of a
cylinder of height y—x and radius R, and, of course, this is again

2n{y—x)R.

(To prove the last statement slit the cylinder vertically and unroll to form a
rectangle. Pythagoras discovered that when opening a tin of beans.)

Tiling found by J. Hirschhorn*
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