A FORMULA FOR PRIME NUMBERS, PART II

Philip Stott*

In answer to my article in Vol. 12 No. 3, the editor has asked if it is always possible to select numbers A and B to satisfy the conditions of the formula. I believe that I am in a position to prove that these numbers can be chosen.

I define two terms as follows: let $P(n)$ denote the n'th prime number (thus $P(1)$ $= 2, P(2) = 3$ and so on) and let

$$
N(n) = P(1) \times P(2) \times \ldots \times P(n).
$$

Now choose $A = N(n)$. Then $A - B$ is prime if

 (i) A and B have no common factor greater than 1.

 $A - P(n)^2 < B < A - 1$. (ii) and

Thus, if such a B exists, it is not divisible by any of $P(1)$, $P(2)$, ..., $P(n)$, and it is among the $P(n)^2 - 2$ consecutive integers

 $A - P(n)^{2} + 1$, $A - P(n)^{2} + 2$, ..., $A-2$.

Now, in answer to my letter in Vol. 13 No. 1, the editor has pointed out that the number of numbers not divisible by any of $P(1)$, $P(2)$, ... $P(n)$ among the first N integers is approximately equal to

$$
N(1-1/P(1))(1-1/P(2))\ldots (1-1/P(n)).
$$

A little thought shows that it does not have to be the first N consecutive positive integers. In any set of N consecutive positive integers, approximately N/P(1) are divisble by P(1), N/P(2) by P(2) and so on, and the result follows as the editor showed in Vol. 13 No. 1.

So, the number of suitable values of B is given approximately by $(P(n)^{2} - 2)(1 - 1/P(1))(1 - 1/P(2)) \ldots (1 - 1/P(n))$, which we shall call F(n).

*Philip is in Year 10 at Newington College.

The following table shows how well F(n) approximates the actual number of suitable B for small values of n:

Clearly, the error caused by using F(n) to approximate the actual number of suitable B is small. So, in order to prove that there is at least one suitable value for B, it need only be shown that F(n) increases as n increases. To do this, consider $F(n)/F(n-1)$.

$$
F(n)/F(n-1) = (1 - 1/P(n))(P(n)^{2} - 2)/(P(n-1)^{2} - 2)
$$

\n
$$
> (1 - 1/P(n)) P(n)^{2}/P(n-1)^{2}
$$

\n
$$
= P(n)(P(n) - 1)/P(n-1)^{2}
$$

\n
$$
> 1.
$$

So to sum up, I have shown that as n increases, F(n) does also. I have shown that, since the error is small, there will always be a value of B satisfying the stipulated conditions. And this all goes to prove that it is always possible to find values for A and B to satisfy the conditions of the formula.

Editor's comment: This is an excellent article. Philip has gone a long way towards answering the question raised concerning his formula. He has given us good reason to believe that the numbers A and B can be found. However, he has not given a proof in the accepted sense. (Just because a statement is true for small values of n, it isn't necessarily true for all values of n.)

However, if we do as Philip does, and choose $A = N(n)$, then it is a fact that there are as many suitable choices for B as there are prime numbers between P(n) and P(n)² (each value of B yields one of these primes, and each of these primes is given by the formula A-B for some B satisfying the conditions). So the formula yields primes if and only if there are primes between P(n) and P(n)². And it is known that there are such primes. So Philip's formula works!

You may be interested to learn that $P(n+1) < 2P(n)$; in other words, each prime is less than twice the previous prime. An equivalent statement is that for every $x \ge 2$, there is a prime between x and 2x. Can you prove that these statements are equivalent?